so sanh:\(4+\sqrt{33}và\sqrt{29}+\sqrt{14}\)
so sanh 4+\(\sqrt{33}va\sqrt{29}+\sqrt{14}\)
Ta có :
\(4+\sqrt{33}>4+\sqrt{25}=4+5=9\)
\(\sqrt{29}+\sqrt{14}< \sqrt{25}+\sqrt{9}=5+3=8\)
Vì \(9>8\) nên \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
Vậy \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
Sorry nhầm !!!! làm tại
\(\sqrt{29}+\sqrt{14}< \sqrt{33}+\sqrt{16}=\sqrt{33}+4\)
Vậy \(\sqrt{33}+4>\sqrt{29}+\sqrt{14}\)
so sanh 4+\(\sqrt{33}\)va \(\sqrt{29}\)+\(\sqrt{14}\)
=3.74165738 chac 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
So sanh: \(4+\sqrt{33}\) va \(\sqrt{29}+\sqrt{14}\)
Ta co:\(4+\sqrt{33}=\approx9,744562647\)
\(\sqrt{29}+\sqrt{14}=\approx9,126822194\)
Vi 9,744562647>9,126822194 nen \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
SO SANH :
4 + \(\sqrt{33}\) va \(\sqrt{29}+\sqrt{14}\)
căn ra số dữ quá *_*!!!!!!!
duyệt đi
Ta có :4+\(\sqrt{33}\) = \(\sqrt{16}+\sqrt{33}\)
Mà \(\sqrt{16}>\sqrt{14},\sqrt{33}>\sqrt{29}\)
Nên \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
Hay \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
so sánh
a) \(4+\sqrt{33}\) và \(\sqrt{29}+\sqrt{14}\)
b) \(\sqrt{26}-\sqrt{3}-\sqrt{2009}\) và -42
a: \(\left(4+\sqrt{33}\right)^2=49+8\sqrt{33}=49+2\cdot\sqrt{528}\)
\(\left(\sqrt{29}+\sqrt{14}\right)^2=43+2\cdot\sqrt{29\cdot14}=43+2\cdot\sqrt{406}\)
mà 49>43 và 528>406
nên \(\left(4+\sqrt{33}\right)^2>\left(\sqrt{29}+\sqrt{14}\right)^2\)
=>\(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
So sánh \(4+\sqrt{33}va\sqrt{29}+\sqrt{14}\)
\(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)
Có: \(\sqrt{16}>\sqrt{14}\)
\(\sqrt{33}>\sqrt{29}\)
=> \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
=> \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
So sánh \(4+\sqrt{33}\)và \(\sqrt{29}+\sqrt{14}\)nhanh hộ mình nha
ta có:
căn 36=6
căn 25=5
=>3<căn 33<4
còn lại tự lm nhé!
\(\text{Ta có : }\hept{\begin{cases}4>\sqrt{14}\left(\sqrt{16}>\sqrt{14}\right)\\\sqrt{33}>\sqrt{29}\left(\text{luôn đúng}\right)\end{cases}}\)
\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
\(\text{Vậy }4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
So sánh:
a,4+\(\sqrt{33}\) và \(\sqrt{29}\) +\(\sqrt{14}\)
Giải:
Vì \(4=\sqrt{16}\Rightarrow4+\sqrt{33}=\sqrt{16}+\sqrt{33}.\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{16}>\sqrt{14}_{\left(1\right).}\\\sqrt{33}>\sqrt{29}_{\left(2\right).}\end{matrix}\right.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\) suy ra: \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}.\)
Hay: \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}.\)
Vậy.....
~ Học tốt!!! ~
So sánh:
4+\(\sqrt{33}\) và \(\sqrt{29}\)+ \(\sqrt{14}\)
Ta Đặt :
A = 4 + \(\sqrt{33}\)
=> A2 = \(\left(4+\sqrt{33}\right).\left(4+\sqrt{33}\right)\)
=> A2 = 4 . 4 + 4 . \(\sqrt{33}\)+ \(\sqrt{33}\). 4 + \(\sqrt{33}\). \(\sqrt{33}\)
=> A2 = 16 + 2.4\(\sqrt{33}\)+33
=> A2 = 49 + 8\(\sqrt{33}\)
Đặt B = \(\sqrt{29}+\sqrt{14}\)
=> B2 = \(\left(\sqrt{29}+\sqrt{14}\right).\left(\sqrt{29}+\sqrt{14}\right)\)
=> B2 = \(\sqrt{29}\). \(\sqrt{29}\)+ \(\sqrt{29}\).\(\sqrt{14}\)+ \(\sqrt{14}\). \(\sqrt{29}\)+ \(\sqrt{14}\).\(\sqrt{14}\)
=> B2 = 29 + 2\(\sqrt{14}\).\(\sqrt{29}\)+ 14
=> B2 = 43 + 2\(\sqrt{14}\).\(\sqrt{29}\)
Ta có :
A = M + I
B = N + O
Đặt I = 49
Đặt O = 43
Vì 49 > 43 => I > O(1)
Đặt M = 2 . 4\(\sqrt{33}\)
=> M2 = 4 . 16 . 33 = 2112
Đặt N = 2\(\sqrt{14}\).\(\sqrt{29}\)
=> N2 = 4 . 14 . 29 = 1624
Vì M2 > N2
=> M > N (2)
Từ (1) và (2)
=> A > B
MỆT QUÁ ! CHO MÌNH TÍCH NHA MẤT KHOẢNG TIẾNG ĐỒNG HỒ
ĐÂY LÀ CÁCH LÀM BÀI CỦA LỚP 7 MÌNH MỚI ĐƯỢC HỌC ĐẤY !
CÁCH LỚP 7 NÊN NÓ DÀI NHA BẠN ! THÔNG CẢM