Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 19:50

\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)

\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)

\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)

Hoàng Phương Minh
Xem chi tiết
Lê Thảo Linh
Xem chi tiết
Mờ Lem
Xem chi tiết
Kiệt Nguyễn
27 tháng 9 2020 lúc 15:43

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:05

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:13

À dạ thôi oke, em hiểu rồi((: 

Khách vãng lai đã xóa
DanAlex
Xem chi tiết
DuLi
4 tháng 12 2017 lúc 18:33

bieu thuc nay ma rut xong chac mat day

Nguyễn Ngọc Quý
4 tháng 12 2017 lúc 19:39

\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{\left(a+2-a\right)\left(a+2+a\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a.\left(a-1\right)}\right]\) (Đk : x khác 0 ; 3 ; - 1 ; 1

\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{4\left(a+1\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a\left(a-1\right)}\right]\)

\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{1}{a-1}-\frac{3}{a\left(a-1\right)}\right]\)

\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\frac{a-3}{a\left(a-1\right)}=\frac{a+2}{a^{n+1}}\)

lê văn hải
5 tháng 12 2017 lúc 18:12

Ta có :

  \(A=\frac{a^2+a-2}{a^{n+1}-3a^n}\times\left[\frac{\left(a+2\right)^2-a^2}{4a^2-4}-\frac{3}{a^2-a}\right].\)

\(A=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{\left(a+2-a\right)\left(a+2+a\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a.\left(a-1\right)}\right]\)  \(ĐK:x\ne0;3;-1;1\)

\(A=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{4\left(a+1\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a.\left(a-1\right)}\right]\)

\(A=\frac{\left(a+2\right)\left(a-1\right)}{a^n.\left(a-3\right)}.\left[\frac{1}{a-1}-\frac{3}{a.\left(a-1\right)}\right]\)

\(A=\frac{\left(a+2\right).\left(a-1\right)}{a^n.\left(a-3\right)}.\frac{a-3}{a.\left(a-1\right)}\)

\(A=\frac{a+2}{a^{n+1}}\)

Duong Thi Nhuong
Xem chi tiết
Nguyen Thi Trinh
4 tháng 1 2017 lúc 15:31

a/ đk: a\(\ne b\), b\(\ne0,a\ne-b\)

= \(\frac{a\left(a-b\right)-a^2-b^2}{a-b}.\frac{a+b+2b}{b\left(a+b\right)}\)

= \(\frac{a^2-ab-a^2-b^2}{a-b}.\frac{a+3b}{b\left(a+b\right)}\)

= \(\frac{-ab-b^2}{a-b}.\frac{a+3b}{b\left(a+b\right)}\)

= \(\frac{-b\left(a+b\right)\left(a+3b\right)}{b\left(a+b\right)\left(a-b\right)}\)

= \(\frac{-a-3b}{a-b}\)

b/ đk: a\(\ne0,a\ne\pm3\)

= \(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right].\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)

= \(\frac{\left(3a+1\right)\left(a+3\right)+\left(3a-1\right)\left(a-3\right)}{a\left(a-3\right)\left(a+3\right)}.\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)

= \(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}.\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)

= \(\frac{6\left(a^2+1\right)\left(a-3\right)\left(a+3\right)}{a\left(a^2+1\right)\left(a-3\right)\left(a+3\right)}\)

= \(\frac{6}{a}\)

Funny Suuu
Xem chi tiết
Minh Nguyen
22 tháng 3 2020 lúc 16:02

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.

Khách vãng lai đã xóa
Đoàn Phương Linh
Xem chi tiết
Charlet
Xem chi tiết