Rút gọn: \(1+\frac{a+3}{a^2+5a+6}\div\left(\frac{8}{4a-8}-\frac{3a}{3a^2-12}-\frac{1}{a+2}\right)\)
Rút gọn A = \(\left[\frac{\left(a-1\right)^2}{\left(a-1\right)^2+3a}+\frac{2a^2-4a-1}{a^3-1}+\frac{1}{a+1}\right]:\frac{2a}{3}\)
\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)
M=\(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
1. tìm ĐKXĐ
2. Rút gọn
3.Tìm GTLN
Rút gọn biểu thức A = \(a-\left(\frac{\left(16-a\right).a}{a^2-4}+\frac{3+2a}{2-a}+\frac{2-3a}{a+2}\right):\frac{a-1}{a^3+4a^2+4a}\)
Cho biểu thức: \(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
a)Rút gọn A
b) Tìm giá trị của a để biểu thức A đạt giá trị lớn nhất.
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)
Mong Idol pro giải thích hộ em chỗ này :((
À dạ thôi oke, em hiểu rồi((:
Rút gọn biểu thức: A=\(\frac{a^2+a-2}{a^{n+1}-3a^n}\times\left[\frac{\left(a+2\right)^2-a^2}{4a^2-4}-\frac{3}{a^2-a}\right]\)
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{\left(a+2-a\right)\left(a+2+a\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a.\left(a-1\right)}\right]\) (Đk : x khác 0 ; 3 ; - 1 ; 1
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{4\left(a+1\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a\left(a-1\right)}\right]\)
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{1}{a-1}-\frac{3}{a\left(a-1\right)}\right]\)
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\frac{a-3}{a\left(a-1\right)}=\frac{a+2}{a^{n+1}}\)
Ta có :
\(A=\frac{a^2+a-2}{a^{n+1}-3a^n}\times\left[\frac{\left(a+2\right)^2-a^2}{4a^2-4}-\frac{3}{a^2-a}\right].\)
\(A=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{\left(a+2-a\right)\left(a+2+a\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a.\left(a-1\right)}\right]\) \(ĐK:x\ne0;3;-1;1\)
\(A=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{4\left(a+1\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a.\left(a-1\right)}\right]\)
\(A=\frac{\left(a+2\right)\left(a-1\right)}{a^n.\left(a-3\right)}.\left[\frac{1}{a-1}-\frac{3}{a.\left(a-1\right)}\right]\)
\(A=\frac{\left(a+2\right).\left(a-1\right)}{a^n.\left(a-3\right)}.\frac{a-3}{a.\left(a-1\right)}\)
\(A=\frac{a+2}{a^{n+1}}\)
Rút gọn :
a) \(\left(a-\frac{a^2+b^2}{a-b}\right).\left(\frac{1}{b}+\frac{2}{a+b}\right)\)
b) \(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right).\frac{a^2-9}{a^2+1}\)
a/ đk: a\(\ne b\), b\(\ne0,a\ne-b\)
= \(\frac{a\left(a-b\right)-a^2-b^2}{a-b}.\frac{a+b+2b}{b\left(a+b\right)}\)
= \(\frac{a^2-ab-a^2-b^2}{a-b}.\frac{a+3b}{b\left(a+b\right)}\)
= \(\frac{-ab-b^2}{a-b}.\frac{a+3b}{b\left(a+b\right)}\)
= \(\frac{-b\left(a+b\right)\left(a+3b\right)}{b\left(a+b\right)\left(a-b\right)}\)
= \(\frac{-a-3b}{a-b}\)
b/ đk: a\(\ne0,a\ne\pm3\)
= \(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right].\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
= \(\frac{\left(3a+1\right)\left(a+3\right)+\left(3a-1\right)\left(a-3\right)}{a\left(a-3\right)\left(a+3\right)}.\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
= \(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}.\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
= \(\frac{6\left(a^2+1\right)\left(a-3\right)\left(a+3\right)}{a\left(a^2+1\right)\left(a-3\right)\left(a+3\right)}\)
= \(\frac{6}{a}\)
Cho biểu thức\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
Rút gọn MTìm giá trị của a để M đạt giá trị lớn nhấta) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)
\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)
\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)
\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)
b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)
\(=4-\frac{16}{a^2+4}\)
Để M đạt giá trị lớn nhất
\(\Leftrightarrow\frac{16}{a^2+4}\)min
\(\Leftrightarrow a^2+4\)max
\(\Leftrightarrow a\)max
Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.
Cho biểu thức P = \(\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right)\div\frac{1}{6-4a}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị nguyên của a để P nhận giá trị nguyên
c) Tìm a để P<0
d) Tìm P biết \(2a^2-a-3=0\)
Bài 6: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)