hãy chứng tỏ rằng:1-1/2+1/3-1/4+......+1/199-1/200=1/101+1/102+1/103+.....+1/200
Hãy chứng tỏ rằng : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Ta có :
\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}=VP\left(đpcm\right)\)
Xét :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
Thêm \(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\)vào mỗi vế ta có
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
\(\RightarrowĐPCM\)
chứng tỏ 1/101+1/102+1/103+.........+1/200=1-1/2+1/3-1/4+.........+1/199-1/200
Chứng minh rằng:
1 - 1/2 + 1/3 -1/4 + ... + 1/199 - 200= 1/101 + +1/102 + 1/103 + ... + 1/200
Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho
sory nhin nham mik rõ đầu bài rồi để mik giải cho
chứng minh rằng :1-1/2+1/3-1/4+...+1/199-1/200 = 1/101+1/102+1/103+1/104+...+1/200.
1/101+1/102+..+1/200=(1+1/2+1/3+...+1/100)+1/101+1/102+1/103+...+1/200-(1+1/2+1/3+...+1/100)
=(1/2+1/4+1/6+...+1/200)+(1+1/3+1/5+...+1/199)-2(1/2+1/4+1/6+...+1/200)
=(1+1/3+1/5+...+1/199)-(1/2+1/4+1/6+...+1/200)
=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
suy ra ĐPCM
nguyen thieu cong thanh ơi cho mình hỏi:
sao lại là :2(1/2+1/4+1/6+...+1/200)
phải là : (1/2+1/4+1/6+...+1/200) chứ
đúng hok?????
Chứng tỏ rằng:
a) 1/101+1/102+1/103+.....+1/149+1/150>1/3
b)1/101+1/102+1/199+1/200>7/12
a, Đặt A = 1/101 + 1/101 + 1/103 +...+ 1/150
A là tổng 50 số giảm dần, và số nhỏ nhất là 1/150
Vậy nên A > 50 x 1/150
=> A > 1/3
b, ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
chứng minh rằng: 1-1/2+1/3-1/4+.......+1/199-1/200=1/101+1/102+1/103+.......+1/200
Lời giải:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}$
$=(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+>..+\frac{1}{199}+\frac{1}{200})-2(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200})-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100})$
$=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}$
Chứng tỏ rằng: 1-1/2+1/3-1/4+...+1/99-1/200=1/101+1/102+...+1/199+1/200
bài này không thể làm được vì hai vế không bằng nhau :D. Tác giả nên xem lại đề bài\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{99}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
Bên trái là tổng xích ma \(\left(-1\right)^{x+1}.\frac{1}{x}\)với x chạy từ 1 đến 99
Bên phải là tổng xích ma \(\frac{1}{x}\)với x chạy từ 101 tới 200
dùng máy tính casio fx bấm 2 tổng thấy 2 kết quả lệch ngay từ số thập phân thứ ba
nếu là thế này thì mới làm được
\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
ta làm như sau: Biến đổi vế trái ta có
\(VT=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{199}+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
=\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}=VP\)
=
chứng tỏ rằng 1-1/2+1/3-1/4+.....+1/99-1/200=1/101+1/102+...+1/199+1/200
Chứng tỏ rằng :1-1/2+1/3+1/4+...+1/99-1/200=1/101+1/102+...+1/199+1/200 .