Chứng minh rằng
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
1.Chứng minh rằng :\(\dfrac{5}{8}< \dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{3}{4}\)
Cho A = \(\dfrac{1}{100^2}+\dfrac{1}{101^2}+...+\dfrac{1}{199^2}\) . CM \(\dfrac{1}{200}< A< \dfrac{1}{99}\)
Cho biểu thức A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....................+\frac{1}{200}\). Chứng minh rằng \(A>\frac{7}{12}\)
Tính :
1) C = \(\left(\dfrac{1}{200^2}-1\right)\left(\dfrac{1}{199^2}-1\right)...\left(\dfrac{1}{101^2}-1\right)\)
2) \(D=\dfrac{1}{1-\dfrac{1}{1-2^{-1}}}+\dfrac{1}{1+\dfrac{1}{1+2^{-1}}}\)
Tính tổng các dãy số sau
a.100-99+98-97+96-95+...+4-3+2-1
b.200-199+198-197+...+4-3+2-1
B=\(\frac{1}{101}+\frac{1}{102}+......+\frac{1}{200}\)CMR : B >\(\frac{7}{12}\)
tính tỉ số \(\frac{A}{B}\)biết:
A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\)
B=\(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
Cho C=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{199}{200}\) Chứng minh C2<\(\dfrac{1}{201}\)