Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Hiền Nga

1.Chứng minh rằng :\(\dfrac{5}{8}< \dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{3}{4}\)

Phạm Nguyễn Tất Đạt
16 tháng 5 2018 lúc 20:07

+)Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)

\(A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...+\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+...+\dfrac{1}{200}\right)\)\(A>\dfrac{1}{125}.25+\dfrac{1}{150}.25+\dfrac{1}{175}.25+\dfrac{1}{200}.25=\dfrac{533}{840}>\dfrac{5}{8}\)

+)\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)

\(A=\left(\dfrac{1}{101}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...+\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...+\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...+\dfrac{1}{200}\right)\)\(A< \dfrac{1}{100}.20+\dfrac{1}{120}.20+\dfrac{1}{140}.20+\dfrac{1}{160}.20+\dfrac{1}{180}.20=\dfrac{1879}{2520}< \dfrac{3}{4}\)


Các câu hỏi tương tự
Đức Vương Hiền
Xem chi tiết
Nguyễn Lê Thảo Mai
Xem chi tiết
Cẩm Cúc Nguyễn Thị
Xem chi tiết
duongmko60 đỗ
Xem chi tiết
Monkey D Luffy
Xem chi tiết
O O O
Xem chi tiết
ッLEGEND♛✔
Xem chi tiết
dream XD
Xem chi tiết
Yui Arayaki
Xem chi tiết