Tìm số tự nhiên n sao cho A= (n+5)/(3n-4) là số tự nhiên
Bài1) Tìm số tự nhiên a,b sao cho (3a+1)(b-5)=21
Bài 2) Tìm số tự nhiên n sao cho: (3n+4) chia hết 2n-1
Bài 1:
Ta có: (3a+1)(b-5)=21=1.21=21.1=3.7=7.3. Kẻ bảng:
+/ 3a+1=1=>a=0
b-5=21=>b=26
+/ 3a+1=21 => a=20/3 (Loại)
+/ 3a+1=3 => a=2/3 (Loại)
+/ 3a+1=7 => a=2
b-5=3 => b=8
ĐS: a,b ={(0, 26); (2, 8)}
Bài 2:
Ta có: 3n+4 chia hết cho 2n-1 => 2(3n+4) chia hết cho 2n-1
2(3n+4)=6n+8=6n-3+11=3(2n-1)+11
Vậy để 3n+4 chia hết cho 2n-1 thì 11 phải chia hết cho 2n-1
=> Có 2 trường hợp:
+/ 2n-1=1 => n=1
+/ 2n-1=11 => n=6
ĐS: n={1;6}
Tìm số nguyên n sao cho:
a) (n+1)/(n-2) là số nguyên âm.
b) (n+7)/(3n-1) là số nguyên.
c) (3n+2)/(4n-5) là số tự nhiên.
Tìm số tự nhiên n sao cho\(\frac{3n+5}{n+1}\)
có gía trị là số tự nhiên
Ta có : \(\frac{3n+5}{n+1}=\frac{3n+3+2}{n+1}=1+\frac{2}{n+1}\)
Vậy để Biểu thức trên có giá trị là một số tự nhiên
\(\Rightarrow n+1\inƯ\left(2\right)=\left(1;2\right)\)
\(\Rightarrow n\in\left(0;1\right)\)
1.Tìm các số tự nhiên a,b khác 0 sao cho :
\(\dfrac{a}{5}-\dfrac{z}{b}=\dfrac{2}{15}\).
2.Tìm số tự nhiên n, để các biểu thức là số tự nhiên.
a)A=\(\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\).
b)B=\(\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+1}{n+2}\).
giúp mình với mai mình nộp rồi
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
tìm số tự nhiên n sao cho a=n^4-2n^3+3n^2-2n là số chính phương
Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
cho a= 5/n+3 tìm n để
a A là 1 phân số
b a là 1 số tự nhiên
2 cho b =3n-5/n+4 tìm n để
a A là 1 phân số
b a là 1 số tự nhiên
Bài 2:
a: Để A là phân số thì \(n+4\ne0\)
hay \(n\ne-4\)
b: Để A là số tự nhiên thì \(3n-5⋮n+4\)
\(\Leftrightarrow-17⋮n+4\)
\(\Leftrightarrow n+4=17\)
hay n=13
Tìm số tự nhiên n sao cho 3n+4 thuộc BC (5;n-1)
3n + 4 thuoc BC(5.n-1) thi ta co
3n-1+4=5
3n-1=5-4
3n-1=1
3n=1+1
3n=1
Nen n =2
Vay 3n+4=32+4
va BC(5,n-1)=BC(5,2-1)
suy ra n=2
tìm số tự nhiên n sao cho 3n + 4 thuộc BC (5 ; n - 1)