tính tổng : 1/1.2.3.4 + 1/2.3.4.5 +....+1/27.28.29.30 =
Tính tổng A=1/1.2.3.4+1/2.3.4.5+1/3.4.5.6+...+1/27.28.29.30
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
=> \(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{27.28.29.30}\)
=> \(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
=> \(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}=\frac{14.29.10-1}{28.29.30}=\frac{4059}{28.29.30}\)
=> \(A=\frac{4059}{28.29.30}:3=\frac{1353}{28.29.30}=\frac{451}{28.29.10}\)
=> \(A=\frac{451}{8120}\)
\(\text{Tính tổng: }\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)
Ta có \(\dfrac{1}{n\left(n+1\right)\left(n+2\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\dfrac{3}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Áp dụng:
\(\dfrac{1}{1\cdot2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29\cdot30}\\ =\dfrac{1}{3}\left(\dfrac{3}{1\cdot2\cdot3\cdot4}+\dfrac{3}{2\cdot3\cdot4\cdot5}+...+\dfrac{3}{27\cdot28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{2\cdot3\cdot4}-\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{27\cdot28\cdot29}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{1\cdot2\cdot3}-\dfrac{1}{28\cdot29\cdot30}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{24360}\right)=\dfrac{1}{3}\cdot\dfrac{1353}{8120}=\dfrac{451}{8120}\)
\(\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{3}{3.4.5.6}+...+\dfrac{3}{27.28.29.30}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\right)=\dfrac{1}{3}.\dfrac{4060-1}{28.29.30}\)
\(=\dfrac{1}{3}.\dfrac{4059}{24360}=\dfrac{1353}{24360}=\dfrac{451}{8120}\)
tính tổng:
\(a=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
tính\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
tính giá trị biểu thức: 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 +...+1/27.28.29.30
Nhận xét: 1/1.2.3 - 1/2.3.4 = 3/1.2.3.4, 1/2.3.4 - 1/3.4.5 =3/2.3.4.5,...,1/27.28.29 - 1/28.29.30
Gọi biểu thức phải tính bằng A,ta tính được:
3A=1/2.3 - 1/28.29.30 = 4059/28.29.30
vậy A = 1353/8120
tính
a) 2/3.5+2/5.7+2/7.9+2/9.11+2/11.13
b) 1/1.2.3.4+1/2.3.4.5+1/3.4.5.6+1/27.28.29.30
a,\(\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{11.13}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{11}-\frac{1}{13}\)
=\(\frac{1}{3}-\frac{1}{13}\)
=\(\frac{10}{39}\)
b,Đặt A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.............+\frac{1}{27.28.29.30}\)
3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...........+\frac{3}{27.28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.............+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{6}-\frac{1}{24360}\)
3A=\(\frac{1353}{8120}\)
A=\(\frac{451}{8120}\)
1/1.2.3.4+1/2.3.4.5+......+1/27.28.29.30
mn giải giúp mik nhé mik tik cho
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+....+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+....+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(=\frac{451}{8120}\)
\(y=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
Giải tiếp(ko chép đề)
= 1/1 - 1/2 - 1/3 - 1/4 + 1/2 - 1/3 - 1/4 - 1/5 + ... + 1/27 - 1/28 - 1/29 - 1/30
= 1 - 1/30
= 29/30
ks nha
Bài giải :(không chép đề)
=1-1/2-1/3-1/4-1/5+1/2-1/3-1/4-1/5+........+1/27-1/28-1/29-1/30
=1-1/30
=29/30
Vậy số cần tìm là:29/30 Suy ra Y=29/30
\(\frac{1}{1.2.3.4}=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}\right)\)
\(\frac{1}{2.3.4.5}=\frac{1}{3}\left(\frac{1}{2.3.4}-\frac{1}{3.4.5}\right)\)
.........
\(\frac{1}{27.28.29.30}=\frac{1}{3}\left(\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(y=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}\right)+\frac{1}{3}\left(\frac{1}{2.3.4}-\frac{1}{3.4.5}\right)+...+\frac{1}{3}\left(\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(y=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(y=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
CÒN LẠI TỰ LÀM NỐT, MỎI TAY QUÁ RÙI =))
Tính giá trị biểu thức :
a) 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...... + 1/27.28.29
b) 1/1.2.3.4 + 1/2.3.4.5 + 1/3.4.5.6 + ..... + 1/27.28.29.30
Khẩn cấp nhé
a) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{27.28}-\frac{1}{28.29}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{28.29}\right)\)
\(=\frac{1}{2}.\frac{405}{812}=\frac{405}{1624}\)
Vậy giá trị của biểu thức \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}=\frac{405}{1624}\)
b) \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+....+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\cdot\frac{1353}{8120}=\frac{451}{8120}\)
Vậy giá trị của biểu thức \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}=\frac{451}{8120}\)