Cho tam giác ABC. Lấy điểm D thuộc tia đối tia BC sao cho BD=BA. Lấy điểm E thuộc tia đối của tia CB sao cho CE=CA. Gọi H là trung điểm của AD. Đường thẳng BH là đường gì đối với tam giác ABD
Cho tam giác ABC. Lấy điểm D thuộc tia đối tia BC sao cho BD=BA. Lấy điểm E thuộc tia đối của tia CB sao cho CE=CA. Gọi H là trung điểm của AD. Đường thẳng BH là đường gì đối với tam giác ABD
CHO MIK HỎI BÀI NÀY VS
Cho tam giác ABC. Lấy điểm D thuộc tia đối tia BC sao cho BD=BA . Lấy điểm E thuộc tia đối của tia CB sao cho CE=CA . Gọi H là trung điểm của AD. Đường thẳng BH là đường gì đối với tam giác ABD
Cho tam giác ABC . Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Trên tia đối của tia CB lấy điểm E sao cho CE=CA. Gọi H là trung điểm của AD , K là trung điểm của AE , I là giao điểm của HB và KC
a, BH là đường gì của tam giác ABD
b, I là giao điểm của 3 đường nào của tam giác ABC
c, I là giao điểm của 3 đường nào của tam giác ADE
Cho tam giác ABC. Lấy D thuộc tia đối BC sao cho BD=BA. Lấy E sao cho CE=CA và E thuộc tia đối CB . Gọi H, K theo thứ tự là trung điểm của AD và AE. Gọi I là giao của HB và KC
a,BH là các đường gì với tam giác ABD
b,Chứng minh: AI là phân giác của góc BAC
c,Chứng minh: trung trực của DE đi qua I
cho tam giác ABC có góc B lớn hơn góc C, kẻ AH vuông góc BC.
a. so sánh BH và CH
b. lấy điểm D trên tia đối của tia BC sao cho BD=BA, lấy điểm E thuộc tia đối của tia CB sao cho CE=CA. chứng minh góc ADE lớn hơn góc AED, từ đó so sánh AD và AE.
C. Gọi M và K theo thứ tự là trung điểm của AD và AE. Đường BM là đường gì đối với tam giác ABD?
d. gọi I là giao điểm MB và KC. chứng minh AI là phân giác góc BAC
e. chứng minh rằng đường trung trực của DE đi qua điểm I
Cho tam giác ABC có AB = AC. Lấy M là trung điểm BC.
a) Chứng minh tam giác ABM = tam giác ACM và tia AM là tia phân giác của góc BAC
b) Lấy điểm D thuộc tia đối của tia BC và điểm E thuộc tia đối của tia CB sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CI vuông góc với AE tại I. Chứng minh: tam giác ABD = tam giác ACE; DH = EI.
c) Trong trường hợp BA = BD và góc BAC = 90 , tính góc BDA
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đo: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: Xét ΔABD và ΔACE co
AB=AC
góc ABD=góc ACE
BD=CE
Do đo: ΔABD=ΔACE
Xét ΔBHD vuông tại H và ΔCIE vuông tại I có
BD=CE
góc D=góc E
Do đo: ΔBHD=ΔCIE
=>DH=EI
cho tam giác ABC cân tại A. trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. kẻ BH vuông góc AD, CK vuông góc AE (H thuộc AD, K thuộc AE). hai đường thẳng HB và KC cắt nhau tại CMR: OA là phân giác của góc BOC
Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE và \(\widehat{ADB}=\widehat{AEC}\)
Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HDB}=\widehat{KEC}\)
Do đó; ΔHBD=ΔKCE
=>\(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BOA}=\widehat{COA}\)
=>OA là phân giác của góc BOC
cho tam giác abc cân tại a trên tia đốicủa tia bc lấy điểm d,trên tia đối của tia cb lấy điểm e sao cho bd=ce.kẻ bh vuông góc với ad,ck vuông góc với ae[h thuộc ad,k thuộc ae].2 đường thẳng hb và kc cắt nhau tại o.CM:a,tam giác abd=tam giác ace;b,tam giác ade cân;c,tam giác dhb=tam giác ekc;d,tam giác boc cân;e,oa là tia phân giác của góc boc
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
c) Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
DB=CE(gt)
\(\widehat{HDB}=\widehat{KEC}\)(hai góc ở đáy của ΔADE cân tại A)
Do đó: ΔDHB=ΔEKC(cạnh huyền-góc nhọn)
d) Ta có: ΔDHB=ΔEKC(cmt)
nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
e) Xét ΔABO và ΔACO có
AB=AC(ΔABC cân tại A)
AO chung
BO=CO(ΔOBC cân tại O)
Do đó: ΔABO=ΔACO(c-c-c)
nên \(\widehat{BOA}=\widehat{COA}\)(hai góc tương ứng)
mà tia OA nằm giữa hai tia OB,OC
nên OA là tia phân giác của \(\widehat{BOC}\)(đpcm)
Cho tam giác ABC cân tại A. Trên tia đối của các tia BC và CB tương ứng lấy hai điểm D và E sao cho BD = CE. Gọi M là trung điểm BC. Từ B và C kẻ BH _|_ AD, CK _|_ AE (H thuộc AD, K thuộc AE). Chứng minh rằng ba đường thẳng BH, CK, AM cùng cắt nhau tại 1 điểm.