Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Lê Hoàng
Xem chi tiết
kiss_rain_and_you
Xem chi tiết
lăng thị chi
Xem chi tiết
Vô danh
Xem chi tiết
Lê Phương Mai
27 tháng 3 2022 lúc 8:53

tra gút gồ đe=))

Xyz OLM
27 tháng 3 2022 lúc 9:05

Đề HSG Nghệ An ak bạn 

P = \(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5\left(n-1\right)\left(n+1\right)\)

\(⋮5\Leftrightarrow Q=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮5\)

mà n không chia hết cho 5 => có dạng n = 5k + 1 ;5k + 2 ; 5k + 3 ;5k + 4 (k \(\in Z\)

Khi n = 5k + 1 => n - 1 \(⋮5\Rightarrow Q⋮5\Rightarrow P⋮5\)

tương tự với n = 5k + 2 ; n = 5k + 3 ; n = 5k + 4 thì Q \(⋮5\Rightarrow P⋮5\)

Nguyễn Việt Lâm
27 tháng 3 2022 lúc 15:05

b. 

Điều duy nhất cần chú ý trong bài toán này: \(n^4\equiv1\left(mod5\right)\) với mọi số nguyên n ko chia hết cho 5

Do đó:

- Nếu cả 5 số a;b;c;d;e đều ko chia hết cho 5 thì vế trái chia hết cho 5, vế phải ko chia hết cho 5 (ktm)

- Nếu cả 5 số a;b;c;d;e đều chia hết cho 5 thì do chúng là số nguyên tố

\(\Rightarrow a=b=c=d=e=5\)

Thay vào thỏa mãn

- Nếu có k số (với \(1\le k\le4\)) trong các số a;b;c;d;e chia hết cho 5, thì vế phải chia hết cho 5, vế phải chia 5 dư \(5-k\ne\left\{0;5\right\}\) nên ko chia hết cho 5 \(\Rightarrow\) ktm

Vậy \(\left(a;b;c;d;e\right)=\left(5;5;5;5;5\right)\) là bộ nghiệm nguyên tố duy nhất

kiss_rain_and_you
Xem chi tiết
Trần Thảo Anh
Xem chi tiết
Oh Nova
3 tháng 4 2018 lúc 22:37

Ta có vì \(a^2+b^2\) chia hết cho \(ab\)

=>A= \(\frac{a^{2018}}{a^{1009}b^{1009}}+\frac{b^{2018}}{a^{1009}b^{1009}}\) =  \(\frac{a^{1009}}{b^{1009}}+\frac{b^{1009}}{a^{1009}}\) (Rút gọn)

Gọi a1009 là x,b1009 là y

=> \(\frac{x}{y}+\frac{y}{x}=\frac{x^2+y^2}{xy}\)\(=\frac{x^2+y^2-2xy}{xy}+2=\frac{\left(x-y\right)^2}{xy}-2\)

Vì (x-y)2>= 0 với mọi x,y => \(\frac{\left(x-y\right)^2}{xy}+2\)luôn lớn hơn hoặc bằng 2 

Vậy dấu bằng xảy ra khi x-y=0 => x=y

Vì a2 + b2 chia hết cho ab => a,b là ước chung => a=b

Vậy A =2

Trần Thị Nhung
Xem chi tiết
NGƯỜI YÊU  CŨ CỦA BẠN
Xem chi tiết
Trương Tuệ Nga
Xem chi tiết
Cô Hoàng Huyền
6 tháng 11 2017 lúc 17:09

Giả sử   \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.

Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)

TH1: Nếu trong a và b có một số chẵn, một số lẻ:

Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)

\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)

Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)

\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.

Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.

Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.

TH2: Nếu cả a và b đều lẻ

\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.

Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1) 

Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)

Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.

Vậy k luôn bằng 5 và nó là số nguyên tố.