Cho đường tròn tâm O và dây AB không qua O. Gọi H là trung điểm AB, tia OH cắt cung lớn AB tại M. Một dây CD đi qua H
A) Chứng minh:Cung MA=cung MB
B) So sánh số đo các cung nhỏ AB và CD
Cho đường tròn (O), AB là dây cố định không đi qua tâm. M là một điểm trên cung lớn AB sao cho tam giác MAB nhọn. Gọi D và C theo thứ tự là điểm chính giữa của các cung nhỏ MA, MB. Đường thẳng AC cắt đường thẳng BD tại I, đường thẳng CD cắt các cạnh MA và MB lần lượt tại P, Q.
a) Chứng minh tam giác ADI cân
b) Chứng minh tứ giác ADPI nội tiếp
c) Chứng minh PI = MQ
d) Tia MI cắt đường tròn (O) tại N. Khi M chuyển động trên cung lớn AB thì trung điểm của MN chuyển động trên đường nào ?
a: góc AID=1/2(sđ cung AD+sđ cung CB)
=1/2(sđ cung MD+sđ cung MC)
=1/2*sđ cung CD
=góc DAI
=>ΔAID cân tại D
b: góc PAI=góc PDI(1/2sđ cung MC=1/2sđ cung CB)
=>PDAI nội tiếp
Câu 1: Cho đường tròn (O), dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Câu 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA=PB.
Câu 3: Cho đường tròn (O;5) và một dây cung AB dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung Ab tại M. Tính độ dài dây cung MA.
Cho đường tròn tâm O bán kính R, hai dây cung AB và CD, các tia BA và DC cắt nhau tại M nằm ngoài (O) a) Biết AB=CD chứng minh MA=MC. b) Nếu AB>CD, hãy so sánh khoảng cách từ điểm M đến trung điểm của các dây AB, CD
Cho đường tròn tâm O với dây AB cố định (AB không qua O) đường kính CD vuông góc với AB tại K( C thuộc cung lớn AB). Điểm N thuộc cung nhỏ AC. Nối CN cắt AB tại M, nối ND cắt AB tại E. Gọi H là trung điểm NC, kẻ HI vuông góc AN tại I.
1. Chứng minh CNEK là tứ giác nội tiếp
2. Chứng minh MN.MC=MA.MB
3. Cho N di chuyển trên cung nhỏ AC, CM IH đi qua 1 điểm cố định và I thuojc một đường tròn cố định
1: góc CND=1/2*180=90 độ
Vì góc CNE+góc CKE=180 độ
nên CNEK nội tiếp
2: Xét ΔMNE và ΔMBC có
góc MNE=góc MBC
góc M chung
=>ΔMNE đồng dạng với ΔMBC
=>MN/MB=ME/MC
=>MN*MC=MB*ME
Bài 1: Cho một đường tròn (O) dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Bài 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA = PB.
Bài 3: Cho đường tròn (O;5) và một dây cung AV dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung AB tại M. Tính độ dài dây cung MA.
Bài 4: Cho đường tròn (O) và một điểm P bên trong đường tròn. Cmr trong tất cả dây đi qua P thì dây vuông góc với OP tại P là dây cung ngắn nhất.
Câu 1: Cho đường tròn (O), dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Câu 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA=PB.
Câu 3: Cho đường tròn (O;5) và một dây cung AB dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung Ab tại M. Tính độ dài dây cung MA.
Giúp mình với mình cần gấp huhu :<
bộ định bảo mọi người làm hết bài tập cho à
Giúp mừn với :<<
Câu 1: Cho đường tròn (O), dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Câu 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA=PB.
Câu 3: Cho đường tròn (O;5) và một dây cung AB dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung Ab tại M. Tính độ dài dây cung MA.
Cho đường tròn tâm O bán kính R, hai dây cung AB và CD, các tia BA và DC cắt nhau tại M nằm ngoài (O)
a) Biết AB=CD chứng minh MA=MC.
b) Nếu AB>CD, hãy so sánh khoảng cách từ điểm M đến trung điểm của các dây AB, CD
Cho đường tròn tâm O bán kính R, hai dây cung AB và CD, các tia BA và DC cắt nhau tại M nằm ngoài (O)
a) Biết AB=CD chứng minh MA=MC
b) Nếu AB>CD, hãy so sánh khoảng cách từ điểm M đến trung điểm của các dây AB, CD