a: Xét (O) có
\(\widehat{AOM}=\stackrel\frown{AM}\)
\(\widehat{BOM}=\stackrel\frown{BM}\)
mà \(\widehat{AOM}=\widehat{BOM}\)
nên \(\overrightarrow{MA}=\stackrel\frown{MB}\)
a: Xét (O) có
\(\widehat{AOM}=\stackrel\frown{AM}\)
\(\widehat{BOM}=\stackrel\frown{BM}\)
mà \(\widehat{AOM}=\widehat{BOM}\)
nên \(\overrightarrow{MA}=\stackrel\frown{MB}\)
Cho đường tròn (O), AB là dây cố định không đi qua tâm. M là một điểm trên cung lớn AB sao cho tam giác MAB nhọn. Gọi D và C theo thứ tự là điểm chính giữa của các cung nhỏ MA, MB. Đường thẳng AC cắt đường thẳng BD tại I, đường thẳng CD cắt các cạnh MA và MB lần lượt tại P, Q.
a) Chứng minh tam giác ADI cân
b) Chứng minh tứ giác ADPI nội tiếp
c) Chứng minh PI = MQ
d) Tia MI cắt đường tròn (O) tại N. Khi M chuyển động trên cung lớn AB thì trung điểm của MN chuyển động trên đường nào ?
Câu 1: Cho đường tròn (O), dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Câu 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA=PB.
Câu 3: Cho đường tròn (O;5) và một dây cung AB dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung Ab tại M. Tính độ dài dây cung MA.
Cho đường tròn tâm O bán kính R, hai dây cung AB và CD, các tia BA và DC cắt nhau tại M nằm ngoài (O) a) Biết AB=CD chứng minh MA=MC. b) Nếu AB>CD, hãy so sánh khoảng cách từ điểm M đến trung điểm của các dây AB, CD
Bài 1: Cho một đường tròn (O) dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Bài 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA = PB.
Bài 3: Cho đường tròn (O;5) và một dây cung AV dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung AB tại M. Tính độ dài dây cung MA.
Bài 4: Cho đường tròn (O) và một điểm P bên trong đường tròn. Cmr trong tất cả dây đi qua P thì dây vuông góc với OP tại P là dây cung ngắn nhất.
Câu 1: Cho đường tròn (O), dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Câu 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA=PB.
Câu 3: Cho đường tròn (O;5) và một dây cung AB dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung Ab tại M. Tính độ dài dây cung MA.
Giúp mình với mình cần gấp huhu :<
Giúp mừn với :<<
Câu 1: Cho đường tròn (O), dây AB = 48cm và cách tâm 7cm. Gọi I là trung điểm của AB, tia IO cắt đường tròn tại C. Tính khoảng cách từ O đến BC.
Câu 2: Cho một đường tròn (O) và một điểm P bên trong đường tròn. Nêu cách dựng dây cung AB đi qua P để PA=PB.
Câu 3: Cho đường tròn (O;5) và một dây cung AB dài 6cm. Gọi I là trung điểm của AB. Tia OI cắt cung Ab tại M. Tính độ dài dây cung MA.
Cho đường tròn tâm O bán kính R, hai dây cung AB và CD, các tia BA và DC cắt nhau tại M nằm ngoài (O)
a) Biết AB=CD chứng minh MA=MC.
b) Nếu AB>CD, hãy so sánh khoảng cách từ điểm M đến trung điểm của các dây AB, CD
Cho đường tròn tâm O bán kính R, hai dây cung AB và CD, các tia BA và DC cắt nhau tại M nằm ngoài (O)
a) Biết AB=CD chứng minh MA=MC
b) Nếu AB>CD, hãy so sánh khoảng cách từ điểm M đến trung điểm của các dây AB, CD
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.