Biet rang xy=24, yz=12, zt=36, xt= 2. Tim gia tri xyzt=
biết rằng xy=24 yz=12 zt=36 xt=2 tìm xyzt=
Biết rằng xy=24, yz=12,zt=36,xt=2 thì giá trị của xyzt là
+) nhân từng vế : (xyzt)2=24.12.36.2=20736=>xyzt=144
+)nhân từng vế :xyzt=24.36=864
+)nhân từng vế:xyzt=12.2=24
Vậy bài toán có 3 đáp số là :24;144;864
\(=>x.y.y.z.z.t.t.x=x^2.y^2.z^2.t^2=\left(xyzt\right)^2\)(1)
Mà x.y.y.z.z.t.t.x=24.12.36.2=20736 (2)
Từ (1) và (2) suy ra \(\left(xyzt\right)^2=20736\)
\(=>xyzt=\sqrt{20736}=144\)
k cho mình nhak
biết rằng xy=24;yz=12;zt=36;xt=2giá trị của xyzt
Biết rằng \(xy=24;yz=12;zt=36;xt=2\) Khi đó xyzt
Biết rằng x.y = 24, yz = 12, zt = 36, xt = 2 thì giá trị của xyzt là
Câu 7:Biết rằng thì giá trị của là
Ta có:
\(\left\{\begin{matrix}xy=24\\yz=12\\zt=36\\xt=2\end{matrix}\right.\Rightarrow xxyyzztt=24.12.36.2\)
\(\Rightarrow x^2y^2z^2t^2=24.12.36.2=20736\)
\(\Rightarrow xyzt^2=20736\)
\(\Rightarrow xyzt=\sqrt{20736}=144\)
Vậy \(xyzt=144\)
Biết rằng \(xy=24;yz=12;zt=36;xt=2\) Thì giá trị của \(xyzt\) là
\(xyyzztxt=\left(xyzt\right)^2=20736\Rightarrow xyzt=\sqrt{20736}=144\)
xy=24;yz=12;zt=36;xt=2
Tim x,y,z,t∈N* thỏa mãn :
31(xyzt+xy+xt+zt+1)=40(yzt+y+z) GIÚP GẤP
31(xyzt+xy+xt+zt+1)=40(yzt+y+t)31(xyzt+xy+xt+zt+1)=40(yzt+y+t)
⇒xyzt+xy+xt+zt+1yzt+y+t=4031⇒xyzt+xy+xt+zt+1yzt+y+t=4031
⇒x(yzt+y+t)+zt+1yzt+y+t=4031⇒x(yzt+y+t)+zt+1yzt+y+t=4031
⇒x+zt+1yzt+y+t=4031⇒x+zt+1yzt+y+t=4031
⇒x+1(yzt+y+tzt+1)=4031⇒x+1(yzt+y+tzt+1)=4031
⇒x+1(y+tzt+1)=4031⇒x+1(y+tzt+1)=4031
⇒x+1y+1(zt+1t)=4031⇒x+1y+1(zt+1t)=4031
⇒x+1y+1z+1t=4031⇒x+1y+1z+1t=4031
4031<6231=2⇒x<24031<6231=2⇒x<2
Với x = 0; có :
1y+1z+1t=40311y+1z+1t=4031
⇒y+1z+1t=3140⇒y+1z+1t=3140
Mà 3140<1⇒y<1⇒y=03140<1⇒y<1⇒y=0
⇒1z+1t=3140⇒1z+1t=3140
⇒z+1t=4031⇒z+1t=4031
⋅z=0⇒t=3140∉Z⋅z=0⇒t=3140∉Z(Loại )
⋅z=1⇒t=319∉Z⋅z=1⇒t=319∉Z(Loại )
Với x=1;x=1;ta có :
1y+1z+1t=4031−11y+1z+1t=4031−1
⇒1y+1z+1t=931⇒1y+1z+1t=931
⇒y+1z+1t=319⇒y+1z+1t=319
319<369=4⇒y<4319<369=4⇒y<4
⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z⋅y=0⇒z+1t=931⇒z=0⇒t=319∉Z(Loại)
⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z⋅y=1⇒z+1t=922⇒z=0⇒t=229∉Z(Loại)
⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z⋅y=2⇒z+1t=913⇒z=0⇒t=139∉Z(Loại )
⋅y=3⇒z+1t=94⋅y=3⇒z+1t=94
94<3⇒z<394<3⇒z<3
z=0⇒t=49∉Zz=0⇒t=49∉Zz=1⇒t=45∉Zz=1⇒t=45∉Zz=2⇒t=4z=2⇒t=4( Thỏa mãn )
Vậy x=1;y=3;z=2;t=4.