Cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh AB, AC lấy các điểm M, N sao cho AM = AN = AH; đường phân giác trong góc BAH và CAH cắt MN tại I, J. HI cắt AB tại E, MN cắt AH tại F. Chứng minh EF song song với CJ.
Cho tam giác ABC vuông tại A có cạnh AB = 21cm, AC = 28cm, vẽ đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA. Tính độ dài AH
b/ Chứng minh AH bình phương = HB.HC
c/ Trên cạnh AC và cạnh AB lấy điểm M và N sao cho CM = 1/3 AC, AN = 1/3 AB. Chứng minh góc CMH = góc ANH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
Xét ΔABC vuông tại A có AH là đường cao
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
hay AH=16,8(cm)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
Cho tam giác ABC vuông tại A.Kẻ đường cao AH ( H thuộc BC) . Trên cạnh AC lấy điểm M sao cho AM=AH.Trên BC lấy điểm N sao cho BN=Ba.CMR:
a) MN vuông góc với AC
b) BC+AH>AB +AC
cho tam giác ABC vuông tại A có đường cao AH. trên cạnh BC lấy điểm M sao cho CM=CA. tren cạnh AB lấy điểm N sao cho AN=AH.chứng minh
a.gócCAM=góc CMA
b.góc CAMvaf góc MAN phụ nhau
c. AM là tia phân giác của góc BAH
d.MN vuông góc AB
a) Xét ΔCAM có CA=CM(gt)
nên ΔCAM cân tại C(Định nghĩa tam giác cân)
hay \(\widehat{CAM}=\widehat{CMA}\)(hai góc ở đáy)(3)
b) Vì tia AM nằm giữa hai tia AB,AC
nên ta có: \(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)
\(\Leftrightarrow\widehat{CAM}+\widehat{NAM}=90^0\)
hay \(\widehat{CAM}\) và \(\widehat{MAN}\) là hai góc phụ nhau(đpcm)
c) Ta có: tia AM nằm giữa hai tia AB,AC
nên \(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}\)
hay \(\widehat{CAM}+\widehat{BAM}=90^0\)(1)
Xét ΔAHM vuông tại H có
\(\widehat{HAM}+\widehat{HMA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{HAM}+\widehat{CMA}=90^0\)(2)
Từ (1), (2) và (3) suy ra \(\widehat{HAM}=\widehat{BAM}\)
mà tia AM nằm giữa hai tia AB,AH
nên AM là tia phân giác của \(\widehat{BAH}\)(đpcm)
d) Xét ΔAHM và ΔANM có
AH=AN(gt)
\(\widehat{HAM}=\widehat{NAM}\)(cmt)
AM chung
Do đó: ΔAHM=ΔANM(c-g-c)
nên \(\widehat{AHM}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{AHM}=90^0\)(AH\(\perp\)HM)
nên \(\widehat{ANM}=90^0\)
hay MN\(\perp\)AB(đpcm)
cho tam giác ABC vuông tại A (AB<AC) trên cạnh BC lấy điểm N sao cho BN=BA từ B kẻ BE vuông góc với AN (E thuộc AN) a, chứng minh tam giác ABE = tam giác NBE b, kẻ đường cao AH của tam giác ABC trên tia đối của tia HA lấy điểm D sao cho HD=HA chúng minh BA=BD c, gọi K là giao điểm của AH và BE chứng minh NK // CA
a) Xét ΔABE vuông tại E & ΔNBE vuông tại E có:
- BE là cạnh chung, BN = BA (giả thuyết)
Suy ra ΔABE = ΔNBE (cạnh huyền - cạnh góc vuông)
b) Theo đề ta có BH vuông góc với AD và HA = HD
Suy ra BH là đường trung trực của AD
Suy ra BA = BD (vì B nằm trên đường trung trực của AD)
c) Trong ΔNAB có AH và BE là đường cao, đồng quy tại điểm K
Suy ra NK là đường cao của ΔNAB, hay NK vuông góc với AB
Mà AC cũng vuông góc với AB, suy ra NK // CA
a. - Vì BE vuông góc với AN (gt)
=> tam giác ABE vuông tại E (tc)
tam giác NBE vuông tại E (tc)
- Xét tam giác vuông ABE và tam giác vuông NBE, có:
+ Chung BE
+ BA = BN (gt)
=> tam giác vuông ABE = tam giác vuông NBE (Cạnh huyền - cạnh góc vuông)
b. - Vì AH là đường cao của tam giác ABC (gt)
=> tam giác ABH vuông tại H
tam giác DBH vuông tại H
- Xét tam giác vuông ABH và tam giác vuông DBH, có:
+ Chung BH
+ HA = HD (gt)
=> tam giác vuông ABH = tam giác vuông DBH (2 cạnh góc vuông)
=> BA = BD (2 cạnh tương ứng)
cho tam giác ABC vuông tại (AB >AC) đường cao AH
a,cho BH = 25cm ; CH = 9cm ; tính AB ;AH
b, cho AH =6 ; BH = 4,5cm . tính AB,AC ,BC ,HC
c, trên cạnh AB lấy điểm M sao cho AM = AC . vẽ MK // AC ( k ∈ BC ) kẻ K I ⊥ AC tại i . đường vuông góc với BC tại K cắt AB tại B
CMR tứ giác AMKI là hình chữ nhật
ME .MB = AI2
a: AH=15cm
\(AB=5\sqrt{34}\left(cm\right)\)
cho tam giác ABC cân tại A . AH là đường cao trên AB lấy điểm M, tren AC lấy điểm N sao cho AM=AN . CM: M,N đối xứng với nhau qua AH
cho tam giác ABC vuông tại A có đường cao AH. Trên cạnh BC lấy điểm M sao cho CM=CA.Trên cạnh AB LẤY điểm N
sao cho AN=AH .CHỨNG MINH
a) góc CAM= góc CMA
b) AM là tia phân giác của góc BAH
c) MN VUÔNG GÓC VỚI ab VÀ MN<MB
cho tam giác abc vuông tại a đg cao ah ti pg bah,cah cắt bc lần lượt ở d và e trên cạnh ab,ac lấy các điểm m,n sao cho am=an=ah mn cắt ad tại i cắt ae tại k câu a cm tam giác abe cân câu b cm bi vuông ak câu c cm tam giác acd cân câu d cm ck vuông ad câu e cm ai vuông ik
a: góc BAE+góc CAE=90 độ
góc BEA+góc HAE=90 độ
mà góc CAE=góc HAE
nên góc BAE=góc BEA
=>ΔBAE cân tại B
c: góc CAD+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
=>ΔCAD cân tại C
cho tam gsc ABC vuông tại A, đường cao AH. kẻ đường phân giác góc B của tam giác ABC cắt AH tại E . trên AB lấy M, trên AC lấy N sao cho AM/AB=CN/AC. CMR góc NHM = 90 độ