a) Xét ΔCAM có CA=CM(gt)
nên ΔCAM cân tại C(Định nghĩa tam giác cân)
hay \(\widehat{CAM}=\widehat{CMA}\)(hai góc ở đáy)(3)
b) Vì tia AM nằm giữa hai tia AB,AC
nên ta có: \(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)
\(\Leftrightarrow\widehat{CAM}+\widehat{NAM}=90^0\)
hay \(\widehat{CAM}\) và \(\widehat{MAN}\) là hai góc phụ nhau(đpcm)
c) Ta có: tia AM nằm giữa hai tia AB,AC
nên \(\widehat{CAM}+\widehat{BAM}=\widehat{BAC}\)
hay \(\widehat{CAM}+\widehat{BAM}=90^0\)(1)
Xét ΔAHM vuông tại H có
\(\widehat{HAM}+\widehat{HMA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{HAM}+\widehat{CMA}=90^0\)(2)
Từ (1), (2) và (3) suy ra \(\widehat{HAM}=\widehat{BAM}\)
mà tia AM nằm giữa hai tia AB,AH
nên AM là tia phân giác của \(\widehat{BAH}\)(đpcm)
d) Xét ΔAHM và ΔANM có
AH=AN(gt)
\(\widehat{HAM}=\widehat{NAM}\)(cmt)
AM chung
Do đó: ΔAHM=ΔANM(c-g-c)
nên \(\widehat{AHM}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{AHM}=90^0\)(AH\(\perp\)HM)
nên \(\widehat{ANM}=90^0\)
hay MN\(\perp\)AB(đpcm)