Tìm hai chữ số tận cùng của :
a, 2200 + 2201 + ... + 2206
b, 32004 + 22005
Dùng mod
Mấy bài dạng này thì làm sao đây mn?-_- em tính xét mod 100 với mod 1000 nhưng xem ra không ổn rồi :(
a) Tìm hai chữ số tận cùng của các số \(14^{14^{14}};17^{5^{121}}\)
b) Tìm ba chữ số tận cùng của số \(3^{2^{2006}}\)
a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)
Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)
Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)
\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)
Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100) mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)
b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)
\(14^{14^{14}}⋮4\)(3)
\(14^{14}\equiv1\left(mod5\right)\)
Đặt 1414=5k+1( vì 14^14 chẵn nên k lẻ)
Khi đó \(14^{14^{14}}=14^{5k+1}\)
\(14^5\equiv-1\left(mod25\right)\Leftrightarrow\left(14^5\right)^k.14\equiv-14\left(mod25\right)\text{vì }k\text{ lẻ}\)
\(\Leftrightarrow14^{14^{14}}\text{chia 25 dư 11}\)=> hai CSTC của 14^14^14 chia 25 dư 11(1)
Mà \(14^{14^{14}}\text{có CSTC là 6 }\)(2)
ta thấy để tm 3 trường hợp trên chỉ có 36
Vậy..
p/s: cách này ko hay lắm :(((((
Tìm hai chữ số tận cùng của :
a, 2200 + 2201 + ... + 2206
b, 32004 + 22005
Dùng mod
Bạn ơi , mình học lớp 6 nên không biết cách dùng mod :
a) 2200 + 2201 + ... + 2206
= 2200 + 2201 + 2202 + 2203 + 2204 + 2205 + 2206
= 2200 + ( 2200 x 21 ) + ( 2200 x 22 ) + ( 2200 x 23 ) + 2204 + ( 2200 x 25 ) + ( 2200 x 26 )
= .....6 + ( .....6 x 2 ) + ( .....6 x 4 ) + ( .....6 x 8 ) + .....6 + ( .....6 x 32 ) + ( .....6 x 64 )
= .....6 + .....2 + .....4 + .....8 + .....6 + .....2 + .....4
= .....2
b) 32004 + 22005
= 32004 + ( 22004 x 21 )
= .....1 + ( .....6 x 2 )
= .....1 + .....2
= .....3
Còn có cách làm khác ở câu a :
a) 2200 + 2201 + ... + 2206
= 2200+201+...+206 = 21421
= ( 21420 x 21 )
= .....6 x 2
= .....2
Tìm hai chữ số tận cùng của :
a, 2200 + 2201 + ... + 2206
b, 32004 + 22005
Dùng mod
a 2^ 20 = 76 ( mod 100)
2^200 = 76^10 = 76 ( mod 100)
2^201 = 52 ( mod 100)
2^ 202 = 4 (mod 100)
2^203 = 8 ( mod 100)
2^ 204 = 16 ( mod 100)
2^ 205 = 32 ( mod 100)
2^ 206 = 64 ( mod 100)
2^200 + 2^201 +....+ 2^ 2006 = 76 + 52 + 4+ 8 + 16 +32 + 64 = 52 ( mod 100)
b 2^2000= 76^100 = 76 ( mod 100)
2^2004 = 76 * 2^4 = 16 ( mod 100)
2^2005 = 16 *2 = 32 ( mod 100)
2^2004 + 2^2005 = 32*16 = 12 ( mod 100)
Tìm 4 chữ số tận cùng của 5^2018 theo phương pháp đồng dư(mod)
Ta có: \(5^{2018}=\left(5^4\right)^{504}.5^2\)
\(5^4\equiv625\left(mod1000\right)\)
\(\Rightarrow\left(5^4\right)^{2018}\equiv625^{2018}\left(mod1000\right)\)
\(\Rightarrow\left(5^4\right)^{2018}\equiv625\left(mod1000\right)\)(vì \(625^{2018}\)có tận cùng là 0625)
\(\Rightarrow\left(5^4\right)^{2018}.5^2\equiv625.5^2\left(mod1000\right)\)
\(\Rightarrow5^{2018}\equiv5625\left(mod1000\right)\)
Vậy: \(5^{2018}\)có tận cùng là 5625
a) Tìm hai số tận cùng của 2100
b] Tìm hai chữ số tận cùng của 71991
a) Tìm hai số tận cùng của 2100.
210 = 1024, bình phương của hai số có tận cùng bằng 24 thì tận cùng bằng 76, các số tận cùng bằng 76 nâng lên lũy thừa nào( khác 0) cũng tận cùng bằng 76. Do đó:
2100 = (210)10= 1024 = (10242)5 = (…76)5 = …76.
Vậy hai chữ sè tận cùng của 2100 là 76.
b] Tìm hai chữ số tận cùng của 71991.
Ta thấy: 74 = 2401, số có tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01. Do đó: 71991 = 71988. 73= (74)497. 343 = (…01)497. 343 = (…01) x 343 =…43
Vậy 71991 có hai số tận cùng là 43.
Đúng nhé
a) Tìm chữ số tận cùng của 5^55
b) Tìm chữ số tận cùng của 10^23
c) Tìm chữ số tận cùng của 6^49
d) Tìm chữ số tận cùng của 11^11
e) Tìm chữ số tận cùng của 9^18
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
a) Không tính kết quả hãy cho biết tích sau tận cùng bởi bao nhiêu chữ số tận cùng giống nhau: 3x6x9x12x...x141 b) tìm hai chữ số tận cùng của tích sau: 4x14x24x24x...x2014
3x6x9x12x...x141 = (1 x 3) x (2 x 3) x (3 x 3) x ( 4 x 3) x ....x ( 47 x 3) = (1x 2 x 3 x 4 x 5 x ....x 47)x ( 3 x 3x 3 x 3x....x3) -Từ ở nhóm 1 có : 5 , 15, 35, 45. Mỗi số này khi ghép với một số chẵn sẽ tạo ra 1 chữ số 0 ở tận cùng -các số 10, 20, 30, 40 mỗi thừa số này cũng tạo ra 1 chữ số 0 ở tận cùng -Số 25 = 5 x 5 sẽ tạo ra 2 chữ số 0 ở tận cùng => có 10 chữ số ở tận cùng giống nhau và là 10 chữ số 0 b, muốn tìm 2 chữ số tận cùng của tích đó thì thực chất ta đi tìm 2 chữ số tận cùng của tích 4 x 4 x 4 x....x 4 ( gồm 202 chữ số 4 ) Ta thấy số có 2 chữ số tận cùng là 76 nhân với nhau thì vẫn được 2 chữ số tận cùng là 76 ( ở dạng bài tìm 2 chữ số tận cùng thì ta cần nhớ 1 số quy luật đặc biệt như vậy ) Lại thấy 24 x 24 = 576; 4x4x4x4x4 = 1024 nên cứ ghép 10 chữ số 4 với nhau ta sẽ được 1 kết quả có 2 chữ số tận cùng là 76 Có 202 chữ số nên ghép được 20 nhóm dư 2 chữ số. Vậy 2 chữ số tận cùng cần tìm là 2 chữ số tận cùng của tích: 76 x 4 x 4 = 1216 Đáp số: 16
Cho C = 1978^1986^8
a, tìm chữ số tận cùng của C
b, tìm hai chữ số tận cùng của C
a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )
mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )
Vậy chữ số tận cùng của C là 6
b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )
mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )
do đó : \(1986^8=20k+16\); với k thuộc N
\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )
lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )
\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )
từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )
vậy C có hai chữ số tận cùng là 76
sai rồi phải là 96 chứ 96*76:R100= 96 mà
Bài 4: Cho số A=2012^2013.Tìm chữ số tận cùng của A
Bài 5:Cho A=2012^2013.Tìm hai chữ số tận cùng của A
5)A=2012^2013
A=2012^2012.2012
A=2012^(4.503).2012
A=(...6).2012=....72 (các số tự nhiên có chữ số tận cùng bằng 2,4,8 khi nâng lên lũy thừa 4n (n khác 0) đều có tận cùng là 6)
Vậy 2 chữ số tận cùng của A là 72
4)
20122013=20122012.2012=(20124)503.2012=(..1)503.2012=(....1).2012=....2
=>chữ số tận cùng của 20122013 là 2