o ∆ABC có A = 600 . Bên ngoài ∆ABC dựng các tam giác đều ABD và ACE. a) Chứng minh D, A, E thẳng hàng. b) Trên tia AE lấy điểm F sao cho EF = AD. Chứng minh tam giác BFC đều
Cho ∆ABC có . Bên ngoài ∆ABC dựng các tam giác đều ABD và ACE.
a) Chứng minh D, A, E thẳng hàng.
b) Trên tia AE lấy điểm F sao cho EF = AD. Chứng minh tam giác BFC đều.
cho tam giác A=60 độ.Bên ngoài tam giác ABC dựng các tam giác đều ABD và ACE
a) Chứng minh D,A,E thẳng hàng
b) Trên tia AE lấy điểm F sao cho EF=AD.Chứng minh tam giác BFC đều
cần gấp lắm rồi mọi người ơi
vẽ hình nữa ạ em cần gấp lắm rồi ạ!!!!!!!!!
Cho tam giác ABC có góc A= 60 độ. Bên ngoài tam giác ABC dựng các tam giác đều ABD và ACE.
a) Chứng minh D, A, E thẳng hàng.
b) Trên tia AE lấy điểm F sao cho EF = AD. Chứng minh tam giác BFC đều.
Bài 1:Cho ∆ABC có góc A= 90 độ, bên ngoài ∆ABC dựng các tam giác ABD vuông cân tại D và ACE vuông cân tại E.
a) Chứng minh D, A, E thẳng hàng.
b) Trên tia AE lấy điểm F sao cho EF = AD. Chứng minh ∆BFC vuông cân tại F.
Bài 2:Cho ∆ABC có góc A= 60 độ. Bên ngoài ∆ABC dựng các tam giác đều ABD và ACE.
a) Chứng minh D, A, E thẳng hàng.
b) Trên tia AE lấy điểm F sao cho EF = AD. Chứng minh tam giác BFC đều.
*Có vẽ hình nhé!!!
Bài 1: Cho ΔABCΔABC có Aˆ=900A^=900, AB > AC. Vẽ đường cao AH của tam giác ABC. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF⊥AHEF⊥AH tại F.
a) CMR: EF = DH.
b) CMR: AB = AE và tính số đo các góc của tam giác ABE.
c) Đường trung trực của đoạn DE cắt BE ở M. Chứng minh các tam giác DME cân và DMB cân.
d) Tính AHMˆAHM^ (thừa nhận EHAˆ+EHBˆ+BHAˆ=3600EHA^+EHB^+BHA^=3600)
Bài 2: Cho tam giác đều ABC. Trên tia AC lấy điểm D (AD>AC) vẽ tam giác đều ADE (B, E thuộc hai nửa mặt phẳng đối nhau bờ AD). Tia EC cắt BD ở M.
a) CMR: BD = CE.
b) Trên tia ME lấy F sao cho MF = MD. CMR tam giác MDF đều.
c) Chứng minh ME = MD + MA, MA = MB + MC
Bài 3: Cho tam giác ABC có Aˆ>1200A^>1200. Phía ngoài tam giác ABC, vẽ các tam giác đều ABD, ACE. Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F.
a) CMR: AD = EF
b) Chứng minh tam giác BFC đều (thừa nhận BACˆ+CAEˆ+EADˆ+DABˆ=3600BAC^+CAE^+EAD^+DAB^=3600)
giải nhanh giúp mình nhé, cảm ơn ạ!
Cho tam giác ABC có góc BAC= 1800. Dựng các tam giác đều ABD, ACE, BCF ( D, E và
F nằm khác phía với A đối với đường thẳng BC). Chứng minh rằng 4 điểm A, D, E và F thẳng
hàng và EF = AD.
Cho tam giác ABC vuông tại A, trên AC lấy D sao cho ABC=3.ABD, trên AB lấy E sao cho ACB=3.ACE. Gọi F là giao điểm của BD và CE và I là giao điểm của các tia phân giác của tam giác BFC. Biết góc BFC=120 độ
Chứng minh tam giác DEI là tam giác đều
Bạn nào biết thì trả lời trước 16h ngày 20-03-2017 nha
sau giờ này thì k cần đâu
cảm ơn trước nha
Cho tam giác ABC nhọ. Dựng về phía ngoài tam giác các tam giác đều ABD và ACE.
1) Chứng minh BE =CD
2) Gọi M, N, P là trung điểm các đoạn thẳng AD, BC, AE. Chứng minh tam giác MNP đều
Mọi người giúp em với.
1. Cho tam giác ABC cân tại A và có góc A bằng 50°.
a) Tính góc B và góc C.
b) Lấy D thuộc AB, E thuộc AC sao cho AD bằng AE. Chứng minh DE song song BC.
2.Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD bằng AE.
a) Chứng minh DB bằng EC.
b) Gọi O là giao điểm của BD và EC. Chứng minh tam giác OBC và tam giác ODE là tam giác CÂN.
c) Chứng minh DE song song BC.
3. Cho tam giác ABC vuông tại A có góc B bằng 60°. Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE bằng CA ( CE,CA nằm cùng phía đối BC ). Trên tia đối BC lấy F sao cho BF bằng BA. Chứng minh :
a) Tam giác ACE đều.
b) A,E,F thẳng hàng ( Góc AEF bằng 180° ).
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng