Tìm x
5x^3-20x=0
Tìm giá trị của đa thức sau:
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)biết \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)
\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)
\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)
Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:
\(E=5x.0+105=105\)
Tìm giá trị của đa thức sau:
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\) biết \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)
Bài 2 :Tim x biết 1)16x^2 - 9(x + 1)^2 = 0 2) (5x - 4)^2 - 49x^2 = 0 3) 5x^3 - 20x = 0
a, \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)
b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)
c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)
Bài 2 :Tim x biết 1)16x^2 - 9(x + 1)^2 = 0 2) (5x - 4)^2 - 49x^2 = 0 3) 5x^3 - 20x = 0
1: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
2: Ta có: \(\left(5x-4\right)^2-49x^2=0\)
\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(2x+4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3: Ta có: \(5x^3-20x=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
1) Tìm x biết
a) x3-5x2+x-5=0
b) x4-2x^3+10x2-20x=0
2) tìm cặp a,b thỏa mãn a-b=ab-1
1)
a) \(x^3-5x^2+x-5=0\Rightarrow x^2.\left(x-5\right)+\left(x-5\right)\)
\(\Rightarrow\left(x^2+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(sai\right)\\x=5\end{cases}}\)\(KL:x=5\)
b) \(x^4-2x^3+10x^2-20x=0\Rightarrow x^3.\left(x-2\right)+10x\left(x-2\right)\)
\(\Rightarrow\left(x-2\right).\left(x^3+10x\right)\Rightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\Rightarrow x=0\end{cases}}\)
Vì nếu x2 + 10 = 0 => x2 = -10 ( sai )
Vậy...
x^4+5x^3-14x^2-20x+16=0
x^4 + 5x^3 - 14x^2 - 20x +16 = 0
<=> x4 + 6x3 - x3 - 4x2 - 6x2 - 4x2 + 4x - 24x + 16 = 0
<=> x4 + 6x3 - 4x2 - x3 - 6x2 + 4x - 4x2 - 24x + 16 = 0
<=> x2(x2 + 6x - 4) - x(x2 + 6x - 4) - 4(x2 + 6x - 4) = 0
<=> (x2 - x - 4)( x2 + 6x - 4 ) = 0
<=> x = (1 + √17)/2
<=> x = (1 - √17)/2
<=> x = -3+√13
<=> x = -3-√13
Tính Giá trị của biểu thức sau theo cách hợp lý
a) A= x^5-5x^4+5x^3-5x^2+5X-1
Với x=4
b) B=x^6-20x^5-20x^4-20x^3-20x^2-20x+3
Với x=21
a) Thay x = 4 vào biểu thức A :
A = 45 - 5.44+ 5.43 - 5.42 + 5.4 -1
= 3
b) Thay x = 21 vào B :
B = 216 - 20.215 - 20.214 -20.213 - 20.212 - 20.21+3
=24
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy