Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lucky

Những câu hỏi liên quan
Tran Hien
Xem chi tiết

a: \(P=5+5^2+5^3+5^4+\cdots+5^{102}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{101}+5^{102}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdots+5^{101}\left(1+5\right)\)

\(=6\left(5+5^3+\cdots+5^{101}\right)\) ⋮6

b:Sửa đề: \(A=1+4+4^2+4^3+\cdots+4^{99}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+\cdots+\left(4^{98}+4^{99}\right)\)

\(=\left(1+4\right)+4^2\left(1+4\right)+\cdots+4^{98}\left(1+4\right)\)

\(=5\left(1+4^2+\cdots+4^{98}\right)\) ⋮5

c: \(B=1+2+2^2+\cdots+2^{98}\)

\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+\cdots+\left(2^{96}+2^{97}+2^{98}\right)\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+\cdots+2^{96}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+\cdots+2^{96}\right)\) ⋮7

d:Sửa đề: \(C=1+3+3^2+3^3+\cdots+3^{103}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\cdots+\left(3^{100}+3^{101}+3^{102}+3^{103}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\cdots+3^{100}\left(1+3+3^2+3^3\right)\)

\(=40\left(1+3^4+\cdots+3^{100}\right)\) ⋮40

Thân Thị Thanh Thảo
Xem chi tiết
Nguyễn Huy Quân
Xem chi tiết
love karry wang
29 tháng 4 2017 lúc 20:50

1. lịch sử dài nhất

2.con gái = thần tiên = tiền thân = trước khỉ mà trước khỉ thì = con dê

3. 4 = tứ. 3= tam. tứ chia tam = tám chia tư

4.câu này thì dài lắm... mk thì ngại viết nên thông cảm

kyto kid
29 tháng 4 2017 lúc 20:48

ko đăng câ hỏi ko liên quan tới toán

Kudo Shinichi
29 tháng 4 2017 lúc 20:49

1) . lịch sử dài nhất

3) 4:3=> tứ : tam => tứ : tam = tám : tư = 2

Nguyễn Huỳnh Tuấn Kiệt
Xem chi tiết
Nguyen Thuy Anh
4 tháng 12 2014 lúc 16:16

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

Ngô Lê Bách
10 tháng 12 2014 lúc 10:48

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

Bách
4 tháng 2 2017 lúc 12:57

em chịu!!!!!!!!!!!

PBB Phys
Xem chi tiết
Monkey.D.Luffy
23 tháng 5 2022 lúc 16:36

\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2+...+\left(\dfrac{1}{2013}\right)^2\)

\(A=\left(\dfrac{1}{2+3+4+...+2013}\right)^2\)

\(A=\left(\dfrac{1}{\left(2013-2\right)+1}\right)^2\)

\(A=\left(\dfrac{1}{2012}\right)^2\)

\(A=\dfrac{1}{2012\cdot2012}\)

\(\Rightarrow A=\dfrac{1}{2012}< \dfrac{3}{4}\)

quỳnh
Xem chi tiết
Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:27

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

Bùi Hồng Thắm
1 tháng 11 2015 lúc 10:24

tất cả đều có trong câu hỏi tương tự

Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:35

b)

A=(1+5+52)+(53+54+55)+...(5402+5403+5404)

A=31.1+31.53+...+31.5402

A=31.(1+53+...+5402)

=>A chia hết cho 31

=>Đâu phải con ma

 

Hải
Xem chi tiết
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:31

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

Khách vãng lai đã xóa
Nguyễn Trọng Anh Văn
28 tháng 2 2020 lúc 19:31

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

Khách vãng lai đã xóa
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:34

\(A=1+4+4^2+...+4^{99}\)

\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)

hay A<B (đpcm)

Khách vãng lai đã xóa
nhem
Xem chi tiết
De Thuong
22 tháng 12 2015 lúc 9:24

Minh lam cau A) thoi duoc hong

Vũ lệ Quyên
Xem chi tiết
Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa