Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nữ hoàng sến súa là ta
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Thị Nhung
Xem chi tiết
Trần Nam Khánh
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2022 lúc 22:31

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

Ngô Nhật Minh
26 tháng 12 2022 lúc 21:46

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

 

Nguyễn Thị Thùy
Xem chi tiết
Cô nàng cự giải
26 tháng 1 2018 lúc 13:06

xy - x = 7 - 5y

=> xy - x + 5y = 7

=> ( xy + x ) + 5y = 7

=> x ( y + 1 ) + 5 ( y + 1 ) = 7

=> y + 1 . ( x + 5 ) = 7 = 1 . 7 = 7 . 1 = ( - 1 ) . ( - 7 ) = ( - 7 ) . ( - 1 )

TH1 :

y + 1 = 1 và x + 5 = 7

=> y  = 2 và x       = 2

TH2 :

y + 1 = 7 và x + 5 = 1

=> y  = 6 và x       = - 4

TH3 : 

 y + 1 = ( - 1 ) và x + 5 = ( - 7 )

=> y   = - 2     và x       = - 12

TH4 :

y + 1 = ( - 7 ) và x + 5 = ( - 1 )

=> y  = - 8     và x       = - 6

Vậy : ...

nguyễn quốc lâm
Xem chi tiết
Trần Đức Tùng
26 tháng 1 2023 lúc 14:41

x=3
y=1
ez:))

nguyễn quốc lâm
7 tháng 4 2023 lúc 22:07

giải thik

MMbeos
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 lúc 17:02

Đề bài thiếu rồi em, phải có x,y,z là số nguyên nữa.

Nếu \(x\ge0\Rightarrow\left|x\right|+3x=x+3x=4x\) chẵn

Nếu \(x<0\Rightarrow\left|x\right|+3x=-x+3x=2x\) chẵn

Nếu \(y\ge0\Rightarrow\left|y\right|+5y=6y\) chẵn

Nếu \(y<0\Rightarrow\left|y\right|+5y=4y\) chẵn

\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y\) luôn chẵn với mọi x,y nguyên

Mà 2z cũng là số chẵn

\(\Rightarrow\left|x\right|+\left|y\right|+3x+5y+2z\) luôn chẵn

Mặt khác 2025 là số lẻ

=> ko tồn tại x,y,z nguyên thỏa mãn \(\left|x\right|+\left|y\right|+3x+5y+2z=2025\)

Cho phương trình:

\(\mid x \mid + \mid y \mid + 3 x + 5 y + 2 z = 2025\)

với \(x , y , z \in \mathbb{R}\).

Bước 1: Phân tích các trường hợp theo dấu của \(x\) và \(y\)

Ta có giá trị tuyệt đối của \(x\) và \(y\) phụ thuộc vào dấu của chúng:

Nếu \(x \geq 0\), thì \(\mid x \mid = x\)Nếu \(x < 0\), thì \(\mid x \mid = - x\)Tương tự với \(y\).Bước 2: Xét 4 trường hợp cho dấu của \(x , y\)Trường hợp 1: \(x \geq 0 , y \geq 0\)

\(\mid x \mid = x , \mid y \mid = y\)

Phương trình trở thành:

\(x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 6 y + 2 z = 2025\)

Trường hợp 2: \(x \geq 0 , y < 0\)

\(\mid x \mid = x , \mid y \mid = - y\)

Phương trình:

\(x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 4 x + 4 y + 2 z = 2025\)

Trường hợp 3: \(x < 0 , y \geq 0\)

\(\mid x \mid = - x , \mid y \mid = y\)

Phương trình:

\(- x + y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 6 y + 2 z = 2025\)

Trường hợp 4: \(x < 0 , y < 0\)

\(\mid x \mid = - x , \mid y \mid = - y\)

Phương trình:

\(- x - y + 3 x + 5 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 x + 4 y + 2 z = 2025\)

Bước 3: Viết lại các phương trình tương ứng:

Trường hợp

Phương trình

1:

 

\(x \geq 0 , y \geq 0\)x≥0,y≥0x≥0,y≥0

\(4 x + 6 y + 2 z = 2025\)4x+6y+2z=20254x+6y+2z=2025

2:

 

\(x \geq 0 , y < 0\)x≥0,y<0x≥0,y<0

\(4 x + 4 y + 2 z = 2025\)4x+4y+2z=20254x+4y+2z=2025

3:

 

\(x < 0 , y \geq 0\)x<0,y≥0x<0,y≥0

\(2 x + 6 y + 2 z = 2025\)2x+6y+2z=20252x+6y+2z=2025

4:

 

\(x < 0 , y < 0\)x<0,y<0x<0,y<0

\(2 x + 4 y + 2 z = 2025\)2x+4y+2z=20252x+4y+2z=2025

Bước 4: Giải hệ cho từng trường hợp (theo tham số)

Ví dụ với trường hợp 1:

\(4 x + 6 y + 2 z = 2025 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 2 z = 2025 - 4 x - 6 y \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } z = \frac{2025 - 4 x - 6 y}{2}\)

với điều kiện \(x \geq 0 , y \geq 0\).

Tương tự cho các trường hợp còn lại, ta có thể biểu diễn \(z\) theo \(x , y\) và các điều kiện về dấu.

Kết luận:Tập nghiệm là tập tất cả các bộ \(\left(\right. x , y , z \left.\right)\) sao cho thỏa mãn một trong các phương trình trên với điều kiện về dấu tương ứng.Ví dụ:

\(\text{N} \overset{ˊ}{\hat{\text{e}}} \text{u}\&\text{nbsp}; x \geq 0 , y \geq 0 , z = \frac{2025 - 4 x - 6 y}{2}\)

và các trường hợp khác tương tự.

Tham khảo

tran khanh dang
Xem chi tiết