Cho x\(\in\)R và x\(\ge\)2 . Tìm giá trị nhỏ nhất của biểu thức P=x2-3x+\(\frac{1}{2x}\)+2
Cho biểu thức : A= x-1/3x và B= ( x+1/2x-2 + 3x-1/x2 - 1 - x+3/2x+2) : 3/x+1 Với x # 0,x# -1,1.
a)Rút gọn biểu thức B
b)Tính giá trị của biểu thức A khi x thỏa mãn x2 - 2x = 0
c) tìm giá trị của x để B/A đạt giá trị nhỏ nhất .
b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
a) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
b) tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x--1)2
c) tìm x sao cho giá trị của biểu thức\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\)không lớn hơn giá trị của biểu thức \(\frac{x^2}{7}-\frac{2x-3}{5}\)
d) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không lớn hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
Tìm giá trị nhỏ nhất của các biểu thức sau:
A= x2-3x+5
B= (2x-1)2+(x+2)2
a) Ta có: \(A=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
b: Ta có: \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x=0
Cho biểu thức P=\(\frac{x^2-2x+2016}{x^2}\) với x\(\ge\)1
Tìm giá trị nhỏ nhất và lớn nhất của P
bn hok pt bậc 2 chưa để mình gải theo cách đó
Ta có: \(P=\frac{x^2-2x+2016}{x^2}=\frac{1}{x^2}\left(x^2-2x+2016\right)\)
Tìm GTNN:
Ta dễ thấy P nhỏ nhất khi \(x^2-2x+2016\) bé nhất
Ta có: \(x^2-2x+2016\)
\(=x^2-2x+1+2015\)
\(=\left(x^2-2x+1\right)+2015\)
\(=\left(x-1\right)^2+2015\ge2015\) (do \(\left(x-1\right)^2\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Thay x = 1 vào biểu thức,ta có: \(P=\frac{1}{x^2}\left[\left(x-1\right)^2+2015\right]\ge2015\)
Vậy \(P_{min}=2015\Leftrightarrow x=1\)
Còn về tìm GTLN thì ta thấy không tìm được vì \(x\ge1\)
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Cho hai số x,y \(\ge\)0 thay đổi và thỏa mãn x+y=2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
P= x(x3 + x2 + x + 1004y) + y(y3 + y2 + y +1004x) + 1
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
\(A=\frac{3x^2-2x+3}{x^2+1}\)
GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2
GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: \(A=\frac{3x^2-2x+3}{x^2+1}\)
Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)
\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)
\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)
\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 2 khi x = 1