Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Aeris
Xem chi tiết
Kiệt Nguyễn
16 tháng 4 2020 lúc 19:35

P/S: Bài này tớ nhớ làm trong đề lớp 9 nào đó mà quên rồi!

Khách vãng lai đã xóa
Nguyễn Phương Uyên
16 tháng 4 2020 lúc 19:40

A B C D E F O

có hình thoi ABCD (gt) => AB = BC (Đn)

có : AB = AC (gt)

=> AB = BC = AC 

=> tam giác ABC đều (đn)

=> ^ABC = 60  (tc)

có : BC // AD do ABCD là hình thoi (gt) ; ^ABC slt ^EAB 

=> ^EAB = 60 (tc) 

tương tự => ^EAB = ^BCF = 60           

có : AD // BC (cmt) => ^AEB = ^CBF (đv) 

xét tam giác AEB và tam giác CBF 

=> tam giác AEB đồng dạng với tg CBF (g-g)

=> AE/AB = BC/CF (đn)

có : AB = BC = AC (cmt)

=> AE/AC = AC/CF 

có : ^EAC = ^ACF = 120 (tự cm)

xét tam giác EAC và tam giác ACF 

=> tam giác EAC đồng dạng với tg ACF (c-g-c)

=> ^AEC = ^OAC (Đn)

xét tam giác EAC và tg AOC có : ^ACO chung

=> tg EAC đồng dạng với tg AOC (g-g)

=> ^AOC = ^EAC (đn) mà ^EAC = 120

=> ^AOC = 120  có : ^AOC = ^EOF (đối đỉnh)

=> ^EOF = 120

Khách vãng lai đã xóa
Chu Mi Mi
16 tháng 4 2020 lúc 19:44

trong sách nâng cao 8 ý

Khách vãng lai đã xóa
Nguyễn Trâm
Xem chi tiết
Huong Giang
Xem chi tiết
toi ngu qua
Xem chi tiết
Trần Tuấn Hoàng
27 tháng 5 2022 lúc 20:42

△AOE và △BOG có:

\(AO=BO\) (O là tâm hình vuông ABCD).

\(AE=BG\)

\(\widehat{OAE}=\widehat{OBG}=45^0\)

\(\Rightarrow\)△AOE=△BOG (c-g-c).

\(\Rightarrow OE=OG;\widehat{AOE}=\widehat{BOG}\)

Mà \(\widehat{AOE}+\widehat{BOE}=90^0\) \(\Rightarrow\widehat{GOE}=\widehat{BOG}+\widehat{BOE}=90^0\)

\(\Rightarrow\)△OGE vuông cân tại O.

Huong Giang
Xem chi tiết
Thanh Tùng DZ
15 tháng 4 2020 lúc 8:39

Theo giả thiết thì AB = BC = CD = AD = AC

\(\Rightarrow\Delta ABC\)và \(\Delta ACD\)đều 

vì BC // ED \(\Rightarrow\widehat{BCF}=\widehat{ADC}=60^o\)

AB // DF \(\Rightarrow\widehat{EAB}=\widehat{ADC}=60^o\)

\(\Rightarrow\widehat{EAC}=\widehat{ACF}=120^o\)

\(\Delta ABE~\Delta DFE\)\(\Delta CFB~\Delta DFE\)

\(\Rightarrow\Delta ABE~\Delta CFB\Rightarrow\frac{AB}{AE}=\frac{CF}{BC}\Rightarrow CF.AE=AB.BC=AC^2\)

\(\Rightarrow\frac{AC}{CF}=\frac{AE}{AC}\)

\(\Rightarrow\Delta ACE~\Delta CFA\left(c.g.c\right)\Rightarrow\widehat{CFA}=\widehat{ACE}\)

Ta có : \(\widehat{OAC}+\widehat{OCA}=\widehat{OAC}+\widehat{CFA}=60^o\)

\(\Rightarrow\widehat{AOC}=\widehat{ÈOF}=120^o\)

Khách vãng lai đã xóa
Lưu Anh Đức
Xem chi tiết
FC TF Gia Tộc và TFBoys...
18 tháng 1 2016 lúc 17:25

Xét ΔAEB và ΔCBF có:

AEB=∡CBF (đồng vị)

EBA=∡BFC (đồng vị)

⟹ΔAEB∼ΔCBF (g.g)

AECB=ABCF

Mà CB=AB=AC (gt) ⟹AEAC=ACCF

Mặt khác ∡EAC=∡ACF(=120o)⟹ΔAEC∼ΔCAF

We_are_one_Nguyễn Thị Hồ...
18 tháng 1 2016 lúc 17:26

tic mình nha Lưu Anh Đức

FC TF Gia Tộc và TFBoys...
18 tháng 1 2016 lúc 17:28

 Theo giả thiết ta có: ΔACD và ΔABC đều.
Ta có:
ΔABECFB(∼ΔDFE)
=>AEBC=ABCF
<=>AEAC=ACCF
Mà CAEˆ=ACFˆ(=120o)
=>ΔACE∼ΔCFA(c.g.c)
* Ta có:
CAFˆ+FABˆ=CABˆ=60o
Mà FABˆ=CFAˆ(AB//CF,slt)
và CFAˆ=ACEˆ(ΔACE∼ΔCFA)
=>CAFˆ+ACEˆ=60o
=>AOCˆ=120o
=>EOFˆ=120o(đđ)

Nguyễn Hữu Tuân
Xem chi tiết
Nguyễn Hữu Tuân
28 tháng 2 2016 lúc 18:37

giúp mình với nha 

Nguyễn Lê Phước Thịnh
21 tháng 6 2022 lúc 13:18

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

Nguyễn Hữu Tuân
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2022 lúc 13:18

Câu 3: 

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

tuan nguyen
Xem chi tiết