Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang Đỗ
Xem chi tiết
trần tuyến
Xem chi tiết
Akai Haruma
30 tháng 6 lúc 17:43

Lời giải:
$a^3+b^3=(a+b)^3-3ab(a+b)=2013$

$\Rightarrow (a+b)^3=3ab(a+b)+2013\vdots 3$

$\Rightarrow a+b\vdots 3$

$\Rightarrow (a+b)^3\vdots 27$ và $3ab(a+b)\vdots 9$

Do đó:

$2013=(a+b)^3-3ab(a+b)\vdots 9$ 

Điều này vô lý do $2013\not\vdots 9$

Vậy không tồn tại $a,b$ nguyên thỏa mãn đề.

lê thị thu thương
Xem chi tiết
Akai Haruma
6 tháng 1 2023 lúc 20:18

Lời giải:

Ta biết rằng một số lập phương khi chia 9 có thể nhận dư là $0,1,8$

Tức là:

$a^3\equiv 0,1,8\pmod {9}$

$b^3\equiv 0,1,8\pmod {9}$

$\Rightarrow a^3-b^3\equiv 0,-1,-8, 1,-7, 8, 7\pmod {9}$

Hay $a^3-b^3\equiv 0,8, 1, 2, 7\pmod {9}$

Mà $2019\equiv 3\pmod {9}$

Do đó không tồn tại số nguyên $a,b$ thỏa mãn $a^3-b^3=2019$ (đpcm)

Nguyenphong2012
Xem chi tiết
Huy Hoàng
Xem chi tiết
Phùng Quang Thịnh
21 tháng 7 2017 lúc 7:40

- Theo đề bài :
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)=) \(\left(b-a\right).\left(a-b\right)=ab\)
Mà vế trái sẽ mang dấu âm còn vế phải mang dấu dương
Mà số âm khác số dương
=)\(\left(b-a\right).\left(a-b\right)\ne ab\)
=) \(\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
=)  Không tồng tại hai số a,b ( \(a,b\in N,a\ne b\)) thỏa mãn đẳng thức : \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) Đpcm

BiBo MoMo
Xem chi tiết
Kiệt Nguyễn
12 tháng 11 2019 lúc 18:15

Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)

\(\Rightarrow x^2-y^2=2018\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)

Dễ c/m: x  và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)

Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)

Mà 2018 không chia hết cho 4 nên điều g/s là sai

Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)

Khách vãng lai đã xóa
Xyz OLM
12 tháng 11 2019 lúc 18:25

Ta có : x2 - 2018 = y2

=> x2 - y2 = 2018

=> (x + y)(x - y) = 2018 

Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)

Lập bảng xét 8 trường hợp ta có : 

x - y1201821009-1-2018-1009-2
x + y2018110092-2018-1-2-1009
x2019/22009/21011/21011/2-2019/2-2019/2-1011/2-1011/2
y2017/2-2007/21007/2-1007/2-2017/22017/2-1007/21007/2

=> Không tồn tại cặp số nguyên x,y thỏa mãn

Khách vãng lai đã xóa
lili
12 tháng 11 2019 lúc 18:28

Mình có 1 cách làm khác ngắn hơn nè, chỉ mất 3 dòng thôi

Do 1 số chính phương chia 4 dư 0 hoặc 1 (tính chất)

Nếu x^2 chia 4 dư 0 (x chẵn). Mà 2018 chia 4 dư 2

=> x^2-2018 chia 4 dư 2 => y^2 chia 4 dư 2=> Vô lí=> Loại

Nếu x^2 chia 4 dư 1 (x lẻ). Mà 2018 chia 4 dư 2

=> x^2-2018 chia 4 dư 3 => y^2 chia 4 dư 3=> Vô lí=> Loại

Thế nên không tồn tại x,y nguyên => đpcm

Khách vãng lai đã xóa
KID Magic Kaito
Xem chi tiết
VRCT_Ran Love Shinichi
5 tháng 9 2016 lúc 14:27

Ta có: (a+b)3=a3+b3+3ab.(a+b)=2013+3ab.(a+b) chia hết cho 3

Do đó: (a+b)3 chi hết cho 3 


=> (a + b) chia hết cho 3 

=> (a+b)3 chia hết cho 27.


Ta có: 3ab.(a+b) chia hết cho 9 

 2013 = (a+b)3−3ab.(a+b) chia hết cho 9: vô lý vì 2013 chia 9 dư 6

 Vậy không tồn tại hay hai số nguyên dương a và b thỏa mãn đề bài

Fan anh vu liz
5 tháng 9 2016 lúc 14:25

thằng trẻ trâu

KID Magic Kaito
5 tháng 9 2016 lúc 14:26

co mi á

thàng cẩu nhi

Hiền Nguyễn
Xem chi tiết
vũ manh dũng
Xem chi tiết