Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ẩn Danh
Xem chi tiết
Vy trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 13:50

\(f\left(x\right)⋮g\left(x\right)\)

\(\Leftrightarrow x^4-3x^3+4x^2-x^2+3x-4+\left(a-3\right)x+\left(b+4\right)⋮x^2-3x+4\)

\(\Leftrightarrow\left(a,b\right)=\left(3;-4\right)\)

hong pham
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 10 2016 lúc 15:50

Cách 1. Sử dụng định lí Bezout : 

Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương

hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)

Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)

Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH

Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)

\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)

Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)

Hoàng Lê Bảo Ngọc
10 tháng 10 2016 lúc 18:33

Lại lỗi dấu ngoặc nhọn =.="

Nijino Yume
Xem chi tiết
Hà Thu Hương
Xem chi tiết
Hà Thu Hương
Xem chi tiết
Hà Thu Hương
Xem chi tiết
Hà Thu Hương
Xem chi tiết
Trang Đoàn
Xem chi tiết