giải bt:tìm x, biết:2x/1.2+2x/3.4+...+2x/99.100=1/51+1/52+...+1/100
Tìm x biết
(1/1.2+1/3.4+...+1/99.100).2019x = (1/51+1/52+...+1/100).2018
Giải hộ ik cần gấp nha??
`(2/1.2 + 2/3.4 + ... + 2/99.100) . (x^2 +x+1945)/2 > 1975 . (1/51 + 1/52 + ... + 1/99 + 1/100)`
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{100}\right)\)
=\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(\left(\dfrac{2}{1\cdot2}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\)=>\(2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
=>\(x^2+x+1945>1975\)
=>\(x^2+x-30>0\)
=>(x+6)(x-5)>0
TH1: \(\left\{{}\begin{matrix}x+6>0\\x-5>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-6\\x>5\end{matrix}\right.\)
=>x>5
TH2: \(\left\{{}\begin{matrix}x+6< 0\\x-5< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -6\\x< 5\end{matrix}\right.\)
=>x<-6
tính B:C biết
B=1/51+1/52+1/53+...+1/100
C= 1/1.2+1/3.4+1/5.6+...+1/99.100
tinh: ( 1/52+ 1/51+ 1/53 + ...+ 1/100) : ( 1/1.2 + 1/3.4 + 1/5.6 + .... + 1/99.100 )
Answer:
Mình làm thành tính tỉ số luôn nhé!
\(A=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}}\)
Ta xét \(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{100}-1-\frac{1}{2}-...-\frac{1}{50}\)
\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{50}-\frac{1}{50}\right)+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}\)
\(\Rightarrow\frac{A}{B}=1\)
tinh: ( 1/52+ 1/51+ 1/53 + ...+ 1/100) : ( 1/1.2 + 1/3.4 + 1/5.6 + .... + 1/99.100 )
Xét mẫu số: 1/(2x3) + 1/(3x4) + …… + 1/(99x100)
= 1/1 – 1/2 + 1/3 – 1/4 + ......... + 1/99 – 1/100
= (1 + 1/3 + ............ + 1/99) – (1/2 + 1/4 + .......... + 1/100)
= (1 + 1/3 + ............ + 1/99)+(1/2+1/4+1/6+….+1/100) – (1/2+1/4+1/6+ .......... + 1/100)x2
= (1 + 1/2 + 1/3 + 1/4 + ..... + 1/99 + 1/100) – (1 + 1/2 + 1/3 + ....... +1/50 )
= 1/51 + 1/52 + 1/53 + ............. + 1/100 (Đơn giản số trừ)
Vậy: (1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/1x2 + 1/3x4 + .......... + 1/99x100) =
(1/51 + 1/52 + 1/53 + ............. + 1/100) / (1/51 + 1/52 + 1/53 + ............. + 1/100) = 1
thế mày biết làm thì làm hộ tao cái, đéo cóp bài đứa trên
tính tỉ số A+1/51+1/52+...+1/100,B= 1/1.2+1/3.4+..+1/99.100
a. A=1/51+1/52+1/53+...+1/100; B=1/1.2+1/3.4+...+1/99.100
Tìm x, biết: (1/1.2+1/3.4+...+1/99.100).x=2012/51+2012/52+...+2012/99+2012/100
giúp mình nhaaaaaaaaaaaaaaaaaaa ^^ (cho bạn luông 1 0 tick í í í ^.*)
Ta có:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right).x=\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{99}+\frac{2012}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right).x=2012.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)
=> x = 2012
Chứng Minh: 1/1.2 + 1/2.3 + 1/3.4 + ... +1/99.100 = 1/51 + 1/52 +1/53 +1/54 +... + 1/100