Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thảo phương
Xem chi tiết
Hai Yen
Xem chi tiết
Phó Thị Minh Ánh
Xem chi tiết
Khánh Linh Nguyễn
Xem chi tiết
Huỳnh Quang Sang
18 tháng 9 2019 lúc 20:44

Bài 1:

  B D A H C E

Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)

Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)

Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)

\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)

Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).

Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)

Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).

2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)

Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)

Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)

Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)

P/S : Hình bài 1 chỉ mang tính chất minh họa nhé

Nguyễn Linh Chi
19 tháng 9 2019 lúc 15:52

Theo yêu cầu vẽ hình của bạn Hyouka :)

2. 

B A C H D TH: ^B > ^C        B A C H D TH: ^B < ^C

Huỳnh Quang Sang
19 tháng 9 2019 lúc 16:06

Cách giải thích tại sao \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)?

H B A C D

Trường hợp điểm H nằm giữa B và D \((\widehat{B}>\widehat{C})\)

Trong hai tam giác vuông AHB và AHC vuông ở H theo tính chất tổng các góc của một tam giác,ta có :

\(\widehat{B}+\widehat{BAH}+\widehat{H}=180^0\)=> \(\widehat{B}=90^0-\widehat{BAH}\)

\(\widehat{C}+\widehat{CAH}+\widehat{H}=180^0\)=> \(\widehat{C}=90^0-\widehat{CAH}\)

Vậy \(\widehat{B}-\widehat{C}=\widehat{CAH}-\widehat{HAB}(1)\)

Vì điểm H nằm giữa hai điểm B và D nên AD là tia phân giác của góc BAC nên \(\widehat{DAB}=\widehat{DAC}=\frac{\widehat{A}}{2}\)

, do đó \(\widehat{DAH}=\frac{\widehat{A}}{2}-\widehat{HAB}\). Lại có \(\widehat{DAH}=\widehat{HAC}-\widehat{DAC}=\widehat{HAC}-\frac{\widehat{A}}{2}\).

Từ đó suy ra \(2\widehat{DAH}=\widehat{HAC}-\widehat{HAB}\)hay \(\widehat{DAH}=\frac{\widehat{HAC}-\widehat{HAB}}{2}\)    \((2)\)

Từ 1 và 2 suy ra \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\) 

phan ngọc linh chi
Xem chi tiết
phan ngọc linh chi
9 tháng 6 2019 lúc 21:13

giúp vs ạ

Lan Nguyễn
Xem chi tiết
Nguyễn Trung Thành
Xem chi tiết
Khôipham1123
Xem chi tiết
Nguyễn Viết Ngọc
12 tháng 5 2019 lúc 9:07

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

Nguyễn Viết Ngọc
12 tháng 5 2019 lúc 9:14

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

secret1234567
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 21:14

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B