cho tam giác ABC vuông ở A tia phân giác của góc C cát cạnh AB ở D . SS độ dài AD và DB
giúp mình nha
cho tam giác ABC biết 12.góc A=10.góc B=15.góc C
a)SS các cạnh của tam giác
b)phân giác của góc Bcats cạnh AC ở D . SS đọ dài AD và AC
giúp mình nha
Cho tam giac ABC có AC=2AB, tia phân giác góc A cắt BC ở D . CMR DC=2.DB
giúp mình nha
Câu 1. cho tam giác ABC, góc B = góc C. Tia phân giác của góc của góc B cắt AC ở D. Tia phân giác của góc C cắt AB ở E. Chứng minh rằng: BD = CE
Câu 2.cho tam gíac ABC, góc A = 90 độ , AB = AC, điểm D thuộc cạnh AB. Đường thẳng qua B và vuông góc với CD cắt đường thẳng CA ở K.CMR:AK = AD
mình cảm ơn
Bài 1:
Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)
Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)
Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)
\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)
Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).
Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)
Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).
2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)
Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)
Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)
P/S : Hình bài 1 chỉ mang tính chất minh họa nhé
Theo yêu cầu vẽ hình của bạn Hyouka :)
2.
:
Cách giải thích tại sao \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)?
Trường hợp điểm H nằm giữa B và D \((\widehat{B}>\widehat{C})\)
Trong hai tam giác vuông AHB và AHC vuông ở H theo tính chất tổng các góc của một tam giác,ta có :
\(\widehat{B}+\widehat{BAH}+\widehat{H}=180^0\)=> \(\widehat{B}=90^0-\widehat{BAH}\)
\(\widehat{C}+\widehat{CAH}+\widehat{H}=180^0\)=> \(\widehat{C}=90^0-\widehat{CAH}\)
Vậy \(\widehat{B}-\widehat{C}=\widehat{CAH}-\widehat{HAB}(1)\)
Vì điểm H nằm giữa hai điểm B và D nên AD là tia phân giác của góc BAC nên \(\widehat{DAB}=\widehat{DAC}=\frac{\widehat{A}}{2}\)
, do đó \(\widehat{DAH}=\frac{\widehat{A}}{2}-\widehat{HAB}\). Lại có \(\widehat{DAH}=\widehat{HAC}-\widehat{DAC}=\widehat{HAC}-\frac{\widehat{A}}{2}\).
Từ đó suy ra \(2\widehat{DAH}=\widehat{HAC}-\widehat{HAB}\)hay \(\widehat{DAH}=\frac{\widehat{HAC}-\widehat{HAB}}{2}\) \((2)\)
Từ 1 và 2 suy ra \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
Bài 1:
Cho tam giác ABC, M là trung điểm của BC và MA = MB = MC.
CMR : tam giác ABC là tam giác vuông
Bài 2:
Cho tam giác ABC có góc B = 70 độ; góc C = 30 độ. Tia phân giác của góc A cắt BC ở D. Đường thẳng đi qua C và song song với AB cắt AD ở E. Trong hình vẽ có các tam giác cân nào? Vì sao?
Bài 3:
Cho tam giác ABC vuông cân tại A. Tia phân giác của góc A cắt BC ở D. Lấy điểm E trên cạnh AB, điểm F trên cạnh AC sao cho AE = CF.
CMR : a) ADB, ADC là tam giác vuông cân
b) tam giác DEF cũng là tam giác vuông cân
Bài 4:
Cho tam giác ABC cân tại A, góc A = 20 độ và tam giác EBC đều ( A và E thuộc cùng 1 nửa mặt phẳng bờ BC ). Tia phân giác của góc ABE cắt AC ở D
CMR : a) AE là tia phân giác của góc A
b) AD = BC
GIÚP TỚ NHA!!!!!
*À!! Vẽ hình giùm tớ lun nhá <3*
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B