cho tam giác ABC vuông ở A .Đường tròn đường kính ABcắt BC ở D .Tiếp tuyến ở D cắt AC ở E
Cho tam giác ABC vuông ở A. Đường tròn đường kính AB cắt BC ở D. Tiếp tuyến ử D cắt AC ở P. Chứng minh tam giác PDC cân
Cho tam giác ABC vuông ở A. Đường tròn đường kính AB cắt BC ở D. Tiếp tuyến ở D cắt AC ở P. Chứng minh PD = PC
Cho tam giác ABC vuông ở A.Đường tròn đường kính AB cắt BC ở D .Tiếp tuyến ở D cắt AC ở P.Chứng minh rằng PD = PC
Cho nửa đường tròn (O) đường kính AB và một điểm C nằm trên nửa đường tròn. Gọi D là một điểm trên đường kính AB, qua D kẻ đường vuông góc với AB cắt BC ở F, cắt AC ở E. Tiếp tuyến của nửa đường tròn ở C cắt EF ở I. Chứng minh:
a) I là trung điểm của EF
b) Đường thẳng OC là tiếp tuyến đường tròn ngoại tiếp tam giác ECF
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng: HA là tiếp tuyến của đường tròn (O)
Cho tam giác ABC nội tiếp đường tròn tâm O,đường kính BC , đường cao AH
1> Cho BH = 9,HC=16.Tính AH,AB,AC và bán kính đường tròn nội tiếp tam giác ABC
2>Vẽ đường tròn tâm I,đường kính AH. Đường tròn tâm I cắt AB ở D,cắt AC ở E và cắt đường tròn tâm O ở K ,K khác A.
Chứng minh AEHD là Hình Chữ Nhật và D,I,E thẳng hàng
3> Chứng minh 0A vuông góc với DE
4>AK cắt BC ở F.Chứng minh F,D,E thẳng hàng
Cho tam giác ABC vuông ở A, AH là đường cao, AB = 8cm, BC = 16cm. Gọi D là điểm đôi xứng với B qua H. Vẽ đường tròn đường kính CD cắt AC ớ E.
a, Chứng minh HE là tiếp tuyến của đường tròn
b, Tính độ dài đoạn thẳng HE
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
b, HE = 4 3
a: Gọi M là trung điểm của CD
=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm
=>MD=ME
=>ΔMDE cân tại M
=>góc MED=góc MDE
Xét ΔABD có
AH vừa là đường cao, vừa là đường trung tuyến
nên ΔABD cân tại A
=>AH là phân giác của góc BAD
=>góc BAH=góc DAH
Xét tứ giác AHDE có
góc AHD+góc AED=180 độ
nên AHDE là tứ giác nội tiếp
=>góc DAH=góc DEH
=>góc DEH=góc BAH=góc C
=>góc MEH=góc C+góc CDE=90 độ
=>HE là tiếp tuyến của (M)
b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CD=BC-2x64/17=161/17(cm)
EM=161/17:2=161/34(cm)
MH=MD+DH=BC/2=8,5cm
=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)