rút gọn rồi tính giá trị biểu thức tại x=1; y=2
A= \(\dfrac{6x^3-4x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)
Rút gọn rồi tính giá trị của biểu thức tại x=1; y=2
A= \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)
ĐK: \(3x\ne\pm y;x\ne0\)
A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)
= \(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)
Thay x = 1; y=2, ta có:
A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)
rút gọn rồi tính giá trị của biểu thức
A= (x+1)(x\(^2\)-x+1)+x-(x-1)(x\(^2\)+x+1)+1994
\(A=x^3+1+x-x^3+1+1994\\ A=x+1996\)
thực hiện phép nhân , rút gọn rồi tính giá trị của biểu thức
x(x^2-y)-x^2(x+y)+y(x^2-x)
tại x=1/2 và y=-100
Cho biểu thức : A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết \(x=-\dfrac{1}{2}\)
c, Tính giá trị của x để A<0
a, ĐKXĐ: x≠±3
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)
A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)
A=\(\dfrac{-1}{x^2}\)
b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:
\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4
c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)
Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
A = ( x - 1 )( x + 1) + ( x + 2 ) ( x^2 + 2x + 4 ) - x ( x^2 + x + 2 )
a. Rút gọn biểu thức
b. Tính giá trị biểu thức A tại x = 1/2
a) \(A=\left(x-1\right).\left(x+1\right)+\left(x+2\right).\left(x^2+2x+4\right)-x.\left(x^2+x+2\right)\)
\(=x^2-1+x^3+2x^2+4x+2x^2+4x+8-x^3-x^2-2x\)
\(=\left(x^3-x^3\right)+\left(x^2+2x^2+2x^2-x^2\right)+\left(4x+4x-2x\right)+\left(-1+8\right)\)
\(=4x^2+6x+7\)
b) Thay vào ta được
\(A=4.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}+7=1+3+7=11\)
Cho hai biểu thức: và với
a) Tính giá trị của B biết x = -1
b) Rút gọn biểu thức A
c) Đặt . Tìm x Z sao cho P nhận giá trị nguyên