giá trị nhỏ nhất của A=85+|2x-3|
giá trị nhỏ nhất của
A=85+/2x-3/
nhận xét ta thấy
/2x - 3 / >=0
=> 85 + /2x -3 / >= 85
dấu = xảy ra khi và chỉ khi
2x -3 = 0
=> 2x = 3
=> x= \(\frac{3}{2}\)
Giá trị nhỏ nhất của A = 85 + |2x - 3|
Các bạn nhớ ghi cách giải giúp mình nhé
giá trị nhỏ nhất của A=85+|2x-3|
số số hạng của dãy là
0;3;6;9;.......;207
( các bạn chỉ cần đáp số thui nha)
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Ai giúp mình với !
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(5.\)
\(x^2-48x+65\)
\(=\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)
Vậy \(Max=-511\)khi \(x=24\)
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
. Giúp mình giải những bài trong Violympic nhé !
1. Giá trị của x để biểu thức B = 3 - x2 + 2x đạt giá trị lớn nhất .
2. Giá trị lớn nhất của biểu thức A = - 2x2+x-5 .
3. Giá trị của biểu thức 4x(x+1)-(1+2x)2-9 .
4. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
5. Giá trị rút gọn của biểu thức (2x-4)(x+3)-2x(x+1).
6. Giá trị nhỏ nhất của biểu thức 4x2-20x+40.
7. Giá trị của x để 3(2x+9)2-1 đạt giá trị nhỏ nhất.
8. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
9. Giá trị nhỏ nhất của biểu thức A = x(x+1)+3/2 .
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1 .
3−x2+2x3−x2+2x
=−(x2−2x−3)=−(x2−2x−3)
=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)
=−((x−1)2−4)=−((x−1)2−4)
=4−(x−1)2≤4=4−(x−1)2≤4
Vậy MAXB=4⇔x−1=0⇒x=1
2 .
A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98
=2(x−54)2−98=2(x−54)2−98
Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x
Vậy GTNN A = -9/8 <=> x = 5/4
3 .
Các bạn giải giúp mình nhé:
c1: giá trị nhỏ nhất của
-x\(^2\)+3x+5
c2: giá trị của ab+bc+ca biết a+b+c=13 và a\(^2\)+b\(^2\)+c\(^2\)=85
c3: giá trị của x để
(2x+1/4)\(^2\)+2016 để đạt giá trị nhỏ nhất.
a, Tìm giá trị nhỏ nhất của A =|2,3-x|+2,4
b, Tìm giá trị nhỏ nhất của B = 5,5-|2x-3/2|
a)
\(A=\left|2,3-x\right|+2,4\)
mà \(\left|2,3-x\right|\ge0\forall x\Rightarrow A\ge2,4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2,3-x=0\Leftrightarrow x=2,3\)
b)
\(B=5,5-\left|2x-\frac{3}{2}\right|\)
mà \(\left|2x-\frac{3}{2}\right|\ge0\forall x\Rightarrow B\le5,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Kì hiệu \(\forall x\)có nghĩa là " với mọi x " nhé
VD : \(\left|2,3-x\right|\ge0\forall x\)= | 2,3 - x | lớn hơn hoặc bằng 0 với mọi x
Tức là với mọi giá trị của x thì | 2,3 - x | luôn lớn hơn hoặc bằng 0
1) giá trị lớn nhất của -17-(x-3)^2
2) giá trị của x để x^2-48x+65 đạt giá trị nhỏ nhất
3) (x-a)(x+a)=x^2-169
4) giá trị của x để 3(2x+9)^2-1 đạt giá trị nhỏ nhất
5) giá trị rút gọn của (x-1)(x+2)-(x+1)x
6) giá trị của biểu thức 4x(x+1)-(1+2x)^2-9