Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dưa Dưa Tiểu
Xem chi tiết
Hoàng Thanh Tuấn
2 tháng 6 2017 lúc 20:55

Câu 2: \(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)^2=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+2\left(x^2+y^2+z^2\right)\)

\(=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+6\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\sqrt[3]{\left(\frac{xy}{z}\right)^2\left(\frac{yz}{x}\right)^2\left(\frac{xy}{y}\right)^2}=3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^2}}=3\)\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge\sqrt{3+6}=3\left(dpcm\right)\)

Dưa Dưa Tiểu
3 tháng 6 2017 lúc 9:21

tại sao lại suy ra đc \(3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^{^2}}}=3\) vậy cậu?

Hoàng Thanh Tuấn
3 tháng 6 2017 lúc 10:56

mình nhìn nhầm đề tưởng xyz =1 ;))))

Áp dụng AM - GM

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2\ge2y^2\)

\(\left(\frac{xy}{z}\right)^2+\left(\frac{xz}{y}\right)^2\ge2x^2\)

\(\left(\frac{zy}{x}\right)^2+\left(\frac{zx}{y}\right)^2\ge2y^2\)

cộng vế với vế có 

\(2\left(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2\left(\frac{xz}{y}\right)^2\right)\ge\left(x^2+y^2+z.^2\right).2\ge6\)

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\)

Khánh Anh
Xem chi tiết
Nguyễn Tiến Đức
Xem chi tiết
Akai Haruma
13 tháng 11 2023 lúc 17:59

Lời giải:

Ta có:

$(a+b+c)^2-(a^2+b^2+c^2)=1-1=0$

$\Leftrightarrow 2(ab+bc+ac)=0$

$\Leftrightarrow ab+bc+ac=0$

Đặt $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t\Rightarrow x=\frac{a}{t}, y=\frac{b}{t}, z=\frac{c}{t}$

Do đó:

$xy+yz+xz=\frac{ab}{t^2}+\frac{bc}{t^2}+\frac{ac}{t^2}$

$=\frac{1}{t^2}(ab+bc+ac)=\frac{1}{t^2}.0=0$

Ta có đpcm.

Le Thi Kim Anh
Xem chi tiết
kien nguyen van
Xem chi tiết
Miu Miu
Xem chi tiết
HUY hoàng nguyễn
Xem chi tiết
HUY hoàng nguyễn
23 tháng 12 2017 lúc 21:44

cảm ơn

Oanh Trần
Xem chi tiết
Nguyễn Anh Kiệt
Xem chi tiết