tìm so nguyên n và a biết rằng 2a.2n+1 là ư6
a) Tìm tất cả các số nguyên a biết : (6a+1) chia hết (3a-1)
b) Tìm hai số nguyên a,b biết: a>0 và a(b-2)=3
c) Tìm số nguyên n sao cho 2n-1 là bội của n+3
tìm hai số nguyên biết rằng tỉ số của chúng là 2/3 và hiệu là 12
Số bị trừ là:
12x3=36
Số trừ là:
36-12=24
Gọi 2 số đó là \(a,b\left(a,b\in Z;b>a\right)\)
Ta có \(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\) và \(b-a=12\)
Áp dụng t/c...
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{b-a}{1}=12\\ \Rightarrow\left\{{}\begin{matrix}a=24\\b=36\end{matrix}\right.\)
Vậy 2 số đó là 24,36
a) Cho đa thức f(x)= ax2+bx+c với a,b,c là các số thực. Biết rằng f(0) ; f(1) ; f(2) có trị nguyên. Chứng minh rằng 2a,2b,2c có giá trị nguyên.
c) Tìm x,y thuộc N biết : 36-y2=8.(x-2010)2
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
\(36-y^2\le36\)
\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)
\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)
Giai tiep nhe
B1:Tìm a,b thuộc N biết: a+b=252 và ƯCLN(a,b)=42
B2: Tìm x thuộc N biết::12 chia hết cho x+3
B3:Chứng minh với mọi n thuộc N, các số sau là 2 số nguyên tố cùng nhau : 2n+1 và 6n+5
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
tìm các số tự nhiên a,b biết rằng a,b là các số nguyên tố cùng nhau và 5a+7b/6a+5b=29/28
Cho A= n+8\2n+5 (n thuộc N*)
a)Chứng tỏ rằng phân số A luôn tồn tại
b) Tìm phân số A biết n=-3; 2n-6=2;n^2 -1 =0
c)cTìm các giá trị của n để A là số nguyên tố.
Tìm số chia và thương biết rằng SBC là 114 và số dư là 9
tìm số tự nhiên a biết rằng khi chia a cho 19 thì đc thương là 68 và số dư r là 1 số tự nhiên khác 0 và chia hết cho 9
Lời giải:
Vì số chia là $19$ nên số dư $r<19$.
Mà $r$ là 1 số tự nhiên khác $0$ và chia hết cho $9$ nên $r$ có thể là $9$ hoặc $18$
Nếu $r=9$ thì: $a=19\times 68+9=1301$
Nếu $r=18$ thì $a=19\times 68+18=1310$