Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H.
tính ah/ad+bh/be+ch/cf
Cho tam giác ABC có các góc đều nhọn, các đường cao AD, BE, CF cắt nhau tại H. CMR: AH/HD+BH/HE+CH/FH>=6.
Cho tam giác ABC nhọn có: 3 đường cao AD, BE, CF cắt nhau tại H
Chứng minh: \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\) không đổi
Cho tam giác nhọn ABC có đường cao AD, BE và CF cắt nhau tại H
Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\)VÀ \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\)
Cjo tam giác nhọn ABC có đường cao AH, BE và CF cắt nhau tại H.
Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\) VÀ \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\)
Cho tam giác ABC nhọn các đường cao AD , BE , CR cắt nhau tại H . Chứng minh :
a) BH . BE + CH.CF = BC2
b) AH . AD +BH . BE +CH . CF = \(\frac{AB^2+AC^2+BC^2}{2}\)
a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)
=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1)
tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)
=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2)
(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)
b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)
cộng lại ta có đpcm
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
Cho tam giác Abc có ba góc nhọn các đường cao AD,BE,Cf cắt nhau tại H
a)chứng minh Tam giac AEF đồng dạng với Tam giác ABC
b)Chứng minh rằng AH/AD+BH/BE+Ch/CF=2
c)AD/HD+BE/HE+CF/HF>=9
d)Đường thăng qua A vuông góc È cắt HM ở K(M là trung điểm của BC)
CHuwngsminh K đối xứng với H qua M
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
Cho tam giác nhọn ABC có các đường cao AD,BE,CF cắt nhau tại H.
a. Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\)
b. Cm: BH*BE+CH*CF=BC^2
c. Cm: H cách đều 3 cạnh của tam giác DEF.
Giúp câu c là đc