chứng minh:8.8.8....8-9+n chia hết cho 9,n là số tự nhiên
Cho A=8^n+111...11(n chữ số 1) ,(n là số tự nhiên khác 0). Chứng minh rằng A chia hết cho 9
2) Chứng minh rằng: với mọi số tự nhiên n tích (n+4)(n+7) là số chẵn
3) Tìm x ϵ N biết : a) 101 chia hết cho x - 1
b) (a+3) chia hết cho (a+1)
4) So sánh: \(^{8^9}\) và \(^{9^8}\) (về mũ 5)
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
cho n là số tự nhiên chia hết cho 3
chứng minh rằng:A=n^3+n^2+3 không chia hết cho 9
A = n3 + n2 + 3
n ⋮ 3⇒ n2 ⋮ 3
⇒ n2 ⋮ 32 (Tính chất của một số chính phương)
⇒ n2 ⋮ 9
⇒ n2.n ⋮ 9
⇒n2.n + n2 ⋮ 9; mà 3 không chia hết cho 9
⇒ n2.n + n2 + 3 không chia hết cho 9
Chứng minh rằng :
a) n . ( n + 5 ) hoặc chia hết cho 25 hoặc không chia hết cho 5 với mọi n là các số tự nhiên.
b)( n + 2 ) . ( n + 9 ) hoặc chia hết cho 49 hoặc không chia hết cho 7 với mọi n là các số tự nhiên.
c) n2 + 5n + 4 hoặc chia hết cho 9 hoặc không chia hết cho 3 với mọi n là các số tự nhiên.
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
a. Cho số A = 101112131415...8586878889, chứng minh rằng số A chia hết cho 9.
b. Chứng tỏ rằng với mọi số tự nhiên n thì: 7n + 8 và 8n + 9 là 2 số nguyên tố cùng nhau.
giải giúp mình với ạ
câu 1. tìm số tự nhiên x sao cho 34* chia hết cho 3 mà không chia hết cho 9.
câu 2. tìm tập hợp các số tự nhiên n vừa chia hết cho 2 vừa chia hết cho 5và 136<n<182
câu 3. cho tổng A=12+15+21+x(x thuộc n). tìm x để A chia hết cho 3
câu 4. khi chia số tự nhiên a cho 12 được số dư là 10. hỏi a có chia hết cho 2 không
câu 5. khi chia số tự nhiên a cho 12 ta được số dư là 9. hổi a có chia hết cho 3 không
câu 6. tìm số tự nhiên có 2 chữ số, các chữ số giống nhau, biết số đó chia hết cho 2, còn chia cho 5 thì dư4
câu 7. chứng minh rằng ab+ba chia hết cho 11
chứng minh aa-a-a chia hết cho 9
câu 8. tìm số tự nhiên n biết
a)2^n:4=16 b)6*2^n+3*2^n=9*2^9 c)25 bé hơn hoặc bằng5^n bé hơn 3125
câu 9. chứng tỏ; 2^15+4^24 chia hết cho 2
câu 10. chứng tỏ rằng nếu (ab+cd)chia hết cho 99
(em sẽ like cho bác nào xong 10 câu nhanh nhất, ghi cả cách làm nữa)
Chứng minh rằng nếu m^2+m.n+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
chứng minh rằng nếu m^2+mn+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3