giả sử x và y là hai số thực thỏa mãn:
x^2+y-z=155 và x^2+y^2=325
Tìm giá trị của /x^3+y^3?
Cho số thực x;y;z thỏa mãn:x+y+z=6;x2+y2+z2=26 và x3+y3+z3=90.Tìm giá trị của x4+y4+z4
Cho số thực x và y thỏa mãn x+y-xy=155 và x2+y2=325.Tìm giá trị của |x3-y3|
\(x^2+y^2=325\)
<=> \(\left(x+y\right)^2-2xy=325\)
Đặt: \(x+y=a;\)\(xy=b\)Khi đó ta có:
\(a-b=155\) (1)
và \(a^2-2b=325\)
Từ (1) ta có: \(b=a-155\) thay vào (2) ta được:
\(a^2-2\left(a-155\right)=325\)
giải ra tìm được: \(\orbr{\begin{cases}a=5\\a=-3\end{cases}}\) => \(\orbr{\begin{cases}a=5;b=-150\\a=-3;b=-158\end{cases}}\)
TH1: \(\hept{\begin{cases}a=5\\b=-150\end{cases}}\) ,=> \(\hept{\begin{cases}x+y=5\\xy=-150\end{cases}}\)
\(x^2+y^2=325\)
<=> \(\left(x-y\right)^2+2xy=325\)
<=> \(\left(x-y\right)^2=325-2xy=625\)
<=> \(\left|x-y\right|=25\)
=> \(\left|x^3-y^3\right|=\left|\left(x-y\right)\left(x^2+y^2+xy\right)\right|=\left|x-y\right|\left(x^2+y^2+xy\right)=4375\)
TH2: bn tự lm tiếp nhé
Cho x,y là hai số thực thỏa mãn:x2+y2-6x+5=0.Giá trị lớn nhất của P=x2+y2 đạt tại x=...
cho x,y là 2 số khác nhau thỏa mãn:x^2-y=y^2-x.tính giá trị của biểu thức A=x^3+y^3+3xy[x^2+y^2]+6x^2y^2[x+y]
Lê Đức Huy sai rồi bạn phải là x2-y-y2-x=0 chứ bạn
Lê Nhật Minh này! Bạn k bt thì đừng nói. Có phải bài nào cx giống nhau đâu, mak có thế thì bạn cx sai
Cho x,y là số thực dương thỏa mãn:x+y\(\le1\)
Tìm giá trị nhỏ nhất của biểu thức:A=\(\dfrac{1}{x^2+y^2}+\dfrac{4}{xy}+8xy\)
\(A=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{2xy}+8xy\right)+\dfrac{3}{xy}\)
\(A\ge\dfrac{4}{x^2+y^2+2xy}+2\sqrt{\dfrac{8xy}{2xy}}+\dfrac{3}{\dfrac{1}{4}\left(x+y\right)^2}\ge20\)
\(A_{min}=20\) khi \(x=y=\dfrac{1}{2}\)
giả sử các số thực x y z đều lớn hơn -1 và thỏa mãn điều kiện x^3+y^3+z^3>=x^2+y^2+z^2 cmr
\(x^5+y^5+z^5>=x^2+y^2+z^2\)
cho ba số x; y;z thỏa mãn:x-1/2=y-2/3=z-3/4 và 2x+3y-z=50. khi đó x+y+z= ?
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1+y-2+z-3}{2+3+4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{45}{9}=5\)
=>\(\frac{x+y+z-6}{9}=5\Rightarrow x+y+z=45+6=51\)
cái thằng lê duy minh ăn hại thì có,5**** 100 phần trăm.
Xét ba số thực x,y,z thỏa mãn các điều kiện x/2=y/3=z/4 và giá trị tuyệt đối của x-y=z^2/12.tìm giá trị lớn nhất của yz-x
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Đáp án D.
Ta có
Khi đó
Đồng nhất hệ số, ta được