Tính:
a) A= 1*2 + 2-3 + ... + 2014*2015
b) B= 1/6 + 1/24 + 1/60 + ... + 1/990
\(\text{Tính : }\)
\(B=2-4-6+8+10-12-14+16+...+2010-2012-2014+2016\)
\(C=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{990}\)
B = 2 - 4 - 6 + 8 + 10 - 12 -14 + 16 + ...+ 2010 - 2012 - 2014 + 2016
= (2 - 4 - 6 + 8 ) + ( 10 - 12 -14 +16 ) + ...+ ( 2010 - 2012 - 2014 + 2016 )
= 0 + 0 +...+ 0 + 0 (có 252 số hạng 0)
= 0
Ta có: Từ 2 đến 2016 có \(\frac{2016-2}{2}+1=1008\)
B=(2-4)-(6-8)+(10-12)-(14-16)+...+(2010-2012)-(2014-2016) như vậy có 1008:2=504 nhóm
=-2+2-2+2+...-2+2 có 504 số hạng trong đó có: 525 số -2 và 525 số +2
=0
\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{9.10.11}\)
\(\Rightarrow2.C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{9.10.11}=\frac{1}{2}\left(\frac{2}{1.3}\right)+\frac{1}{3}\left(\frac{2}{2.4}\right)+\frac{1}{4}\left(\frac{2}{3.5}\right)+\)\(...+\frac{1}{10}\left(\frac{2}{9.11}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{3}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{4}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{10}\left(\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{1}{2}-\frac{1}{2.3}+\frac{1}{3.2}-\frac{1}{3.4}+\frac{1}{4.3}-\frac{1}{4.5}+...+\frac{1}{10.9}-\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{10.11}=\frac{27}{55}\)
=> C=27/110
Tính: B=1\6+1\24+1\60+...+1\990
B=1/1.2.3 +1/2.3.4 +1/3.4.5 +.....+1/9.10.11
=1/2.(2/1.2.3 +2/2.3.4 +2/3.4.5 +.......+2/9.10.11)
=1/2.(1/1.2 -1/2.3 +1/2.3 -1/3.4 +1/4.5 +........+1/9.10 -1/10 .11)
=1/2 .(1/1.2 -1/10.11)
= 1/2 .27/55
=27/110
B=1/6 + 1/24 + +1/60 + ........... + 1/990
Tìm B
tìm thừa số chung cùng số cuối rồi sẽ tính ra
Tính tổng sau : B=1/6+1/24+1/60+...+1/990
Tính tổng sau : B = 1/6+1/24+1/60+...+1/990
tính tổng sau : B=1/6+1/24+1/60+...+1/990
tính tổng sau: B=1/6+1/24+1/60+...+1/990
tính tổng B=1/6+1/24+1/60+....+1/990
Tính B = \(\dfrac{1}{6}+\dfrac{1}{24}+\dfrac{1}{60}+.......+\dfrac{1}{990}\)
Ta có:\(B=\dfrac{1}{6}+\dfrac{1}{24}+\dfrac{1}{60}+...+\dfrac{1}{990}\)
\(2B=\dfrac{2}{6}+\dfrac{2}{24}+\dfrac{2}{60}+...+\dfrac{2}{990}\)
\(2B=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{9\cdot10\cdot11}\)
\(2B=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+...+\dfrac{1}{9\cdot10}-\dfrac{1}{10\cdot11}\)
\(2B=\dfrac{1}{1\cdot2}-\dfrac{1}{10\cdot11}\)
\(2B=\dfrac{27}{55}\)
\(B=\dfrac{27}{55}:2\)
\(B=\dfrac{27}{110}\)