a/b+b/a>hoặc=2.điều kiện a,b >0
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
35x2 – 37x + 2 = 0
Phương trình 35x2 – 37x + 2 = 0
Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = c/a = 2/35.
cho 3 số a b c thỏa mãn điều kiện 0<hoặc =a,b,c<hoặc =2
a+b+c=3
tìm MAX của biểu thức P=\(a^2+b^2+c^2\)
Lời giải:
Ta có:
$P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=9-2(ab+bc+ac)$
Vì $a,b,c\leq 2\Rightarrow (a-2)(b-2)(c-2)\leq 0$
$\Leftrightarrow abc-2(ab+bc+ac)+4(a+b+c)-8\leq 0$
$\Leftrightarrow 2(ab+bc+ac)\geq 4(a+b+c)+abc-8$
Mà $4(a+b+c)+abc-8=4+abc\geq 4$ do $a,b,c\geq 0$
Do đó $2(ab+bc+ac)\geq 4$
$\Rightarrow P=9-2(ab+bc+ac)\leq 5$
Vậy $P_{\max}=5$. Giá trị này đạt tại $(a,b,c)=(2,1,0)$ và hoán vị.
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
4321x2 + 21x – 4300 = 0
Phương trình 4321x2 + 21x – 4300 = 0
Có a = 4321; b = 21; c = -4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = -c/a = 4300/4321.
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
7x2 + 500x – 507 = 0
Phương trình 7x2 + 500x – 507 = 0
Có a = 7; b = 500; c = -507 ⇒ a + b + c = 7 + 500 – 507 = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = c/a = -507/7.
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
x2 – 49x – 50 = 0
Phương trình x2 – 49x – 50 = 0
Có a = 1; b = -49; c = -50 ⇒ a – b + c = 1 – (-49) – 50 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = -c/a = 50.
Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
a ) 35 x 2 − 37 x + 2 = 0 b ) 7 x 2 + 500 x − 507 = 0 c ) x 2 − 49 x − 50 = 0 d ) 4321 x 2 + 21 x − 4300 = 0
a) Phương trình 35 x 2 – 37 x + 2 = 0
Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x 1 = 1 ; x 2 = c / a = 2 / 35 .
b) Phương trình 7 x 2 + 500 x – 507 = 0
Có a = 7; b = 500; c = -507 ⇒ a + b + c = 7 + 500 – 507 = 0
⇒ Phương trình có nghiệm x 1 = 1 ; x 2 = c / a = - 507 / 7 .
c) Phương trình x 2 – 49 x – 50 = 0
Có a = 1; b = -49; c = -50 ⇒ a – b + c = 1 – (-49) – 50 = 0
⇒ Phương trình có nghiệm x 1 = - 1 ; x 2 = - c / a = 50 .
d) Phương trình 4321 x 2 + 21 x – 4300 = 0
Có a = 4321; b = 21; c = -4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0
⇒ Phương trình có nghiệm x 1 = - 1 ; x 2 = - c / a = 4300 / 4321 .
Cho a,b,c > 0 thỏa mãn điều kiện a + b + c < hoặc = 3/2
Tìm GTNN của biểu thức A = a + b + c + 1/a + 1/b + 1/c
Lời giải:
Áp dụng BĐT SVac.xơ: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\)
\(\Rightarrow A\geq a+b+c+\frac{9}{a+b+c}\)
Áp dụng BĐT Cô -si cho các số dương:
\((a+b+c)+\frac{9}{4(a+b+c)}\geq 2\sqrt{\frac{9}{4}}=3\)
\(a+b+c\leq \frac{3}{2}\Rightarrow \frac{27}{4(a+b+c)}\geq \frac{27}{4.\frac{3}{2}}=\frac{9}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow A\geq a+b+c+\frac{9}{a+b+c}\ge 3+\frac{9}{2}=\frac{15}{2}\)
Vậy \(A_{\min}=\frac{15}{2}\Leftrightarrow a=b=c=\frac{1}{2}\)
Bài 1 :
a) Chứng minh : a2 + b2 lớn hơn hoặc bằng 2ab với mọi giá trị a,b
b*) Cho a>0 , b>0 thỏa mãn điều kiện ab=1 . Chứng minh : ( a + 1 )( b + 1 ) >= 1
Câu 1 Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn x ? A. xy+2 =0 B. C. 2x - y = 0. D. 4x + 3 = 0. Câu 2 Điều kiện xác định của phương trình là: A hoặc x ≠ 2. B.. C. và x ≠ 2. D. x ≠ 2. Câu 3 Giá trị x = 1 là nghiệm của phương trình A. x +1 = 0. B. x-1 = 0. C. 2x +1 = 0. D. 3x - 2 = 0. Câu 4 Bất phương trình x +1 < 0 tương đương với bất phương trình A.x - 1. C.x- 1.D. x -1. Câu 5 Biểu diễn tập nghiệm của bất phương trình x 3 trên trục số , ta được Câu 6 Cho AB=25cm,CD=10dm.Tỉ số giữa AB và CD bằng: A.4. B. C. D. Câu 7 Trªn h×nh 1 cã MN//BC ®¼ng thøc nµo ®óng ? . . H×nh 1 Câu 8 ChoABCDE F có . Số đo của góc DEF là A.30o. B. 120o. C. 60o. D. 90o. Câu 9Cho hình hộp chữ nhật ABCD.A/B/C/D/ như hình vẽ. 1/ Hình hộp chữ nhật ABCD.A/B/C/D/ có bao nhiêu mặt bên? A.2. B.4. C. 6. D.8. 2/ Hình hộp chữ nhật ABCD.A/B/C/D/ có bao nhiêu cạnh đáy ? A.4. B.6. C. 8. D.12. 3/