Tìm x (1/1.2.3+1/2.3.4+1/3.4.5+...+1/98.99.100).x=49/200
( 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ....+ 1/98.99.100 ) y =49/200
\(\left(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\right)y=\dfrac{49}{200}\)
\(\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+...+\dfrac{1}{98\cdot99}-\dfrac{1}{99\cdot100}\right)y=\dfrac{49}{200}\)
\(\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{99\cdot100}\right)y=\dfrac{49}{200}\)
\(\left(\dfrac{1}{4}-\dfrac{1}{19800}\right)y=\dfrac{49}{200}\)
\(\left(\dfrac{4950}{19800}-\dfrac{1}{19800}\right)y=\dfrac{49}{200}\)
\(\dfrac{4949}{19800}y=\dfrac{49}{200}\)
\(y=\dfrac{49}{200}:\dfrac{4949}{19800}\)
\(y=\dfrac{99}{101}\)
Vậy \(y=\dfrac{99}{101}\).
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\right)y=\dfrac{49}{200}\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)y=\dfrac{49}{200}\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)y=\dfrac{49}{200}\\ \Rightarrow\dfrac{4949}{9900}y=\dfrac{49}{100}\\ \Rightarrow y=\dfrac{99}{101}\)
\(\left[\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+..........+\frac{1}{98.99.100}\right].x=\frac{49}{200}\)
Ta có
Z = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
2Z = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/98.99.100
2Z = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/98.99 - 1/99.100
2Z = 1/1.2 - 1/99.100
2Z = 4949/9900
=> Z = 4949/19800
=> 4949/19800 . x = 49/200
x = 49/200 : 4949/19800
x = 99/101
Vậy x = 99/101
Ủng hộ nha
Tìm Y biết :
a) (\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right).y=\frac{49}{200}\)
Dựa vào 2/n(n+1)(n+2)= 1/n(n+1) - 1/(n+1)(n+2)
tìm x biết :(1/1.2.3+1/2.3.4+1/3.4.5+..........+1/98.99.100).x=-3
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\right)x=-3\)
\(\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)x=-3\)
\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)x=-3\)
\(\dfrac{1}{2}.\dfrac{4949}{9900}x=-3\)
\(\dfrac{4949}{19800}x=-3\)
\(x=-3:\dfrac{4949}{19800}\)
\(x=-\dfrac{59400}{4949}\)
tìm y biết :
a) (1/1.2.3+1/2.3.4+1/3.4.5+...+1/98.99.100)
tìm x biết :
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... +1/98.99.100 = 1/x .(1/1.2 - 1/99.100)
ai ơi thương tôi với
rối cuộc thì x = bao nhiu!!!!!!!!!!!!!!!!!!!!!!
Nhân cả hai vế với 2
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}=\frac{2}{x}\left(\frac{1}{1.2}-\frac{1}{99.100}\right).\)
Xét vế trái
\(VT=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\)
\(VT=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(VT=\frac{1}{1.2}-\frac{1}{99.100}\)
\(\Rightarrow\frac{2}{x}=1\Rightarrow x=2\)
1/1.2.3 + 1/2.3.4 + 1/3.4.5+...+1/98.99.100 = ?
1/1.2.3 + 1/2.3.4 +....+1/98.99.100
= 1/2 . (3-1/1.2.3 + 4-2/2.3.4 +....+ 100-98/98.99.100)
= 1/2 . (3/1.2.3 -1/1.2.3 + 4/2.3.4 - 2/2.3.4 +.......+ 100/98.99.100 - 98/98.99.100)
= 1/2 . (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 +......+ 1/98.99 - 1/99.100)
= 1/2 . (1/2 - 1/9900)
= 1/2 . 4949/9900
= 4949/19800
1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ...+1/98.99.100 =?
A=11.2.3+12.3.4+13.4.5+...+198.99.100=11.2−12.3+12.3−13.4+...+198.99−199.100=11.2−199.100=494919800
tính: 1/1.2.3+1/2.3.4+1/3.4.5+...+1/98.99.100
=1/1.2.3+1/2.3.4+1/3.4.5+............+1/98.99.100
cho mình xin lỗi vì đáp án mình gửi lên nó bị lỗi nhá