Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Dương Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2023 lúc 0:10

Gọi d=ƯCLN(2n+1;2n^2-1)

=>2n+1 chia hết cho d và 2n^2-1 chia hết cho d

=>2n^2+n chia hết cho d và 2n^2-1 chia hết cho d

=>n+1 chia hết cho d và 2n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 2n^2-1 là hai số nguyên tố cùng nhau

Đỗ Thục Quyên
5 tháng 1 lúc 21:03

Mk xin góp ý vs Phước Thịnh một chút : cách trình bày của bn sai rùi nhé , đây là toán chứ ko phải văn nên trình bày theo kiểu mỗi ý nhỏ một dòng nhe ; hết 2 ý chính thì cách một dòng ; kiệm chữ một chút , thêm số và kí hiệu nhé

An Vũ Bình
Xem chi tiết
Nguyễn Trường Giang
4 tháng 12 2016 lúc 9:33

gọi ucln của n+1 va n+3 là d

nên n+1 chia hết cho d 

n+3 chia hết cho d

(n+3)-(n+1) chia hết cho d

2 chia hết cho d =>d=1,2

mà n+1 ko chia hết cho 2 =>d =1

vậy 2 số đó là 2 số nguyên tố cùng nhau

Nguyễn Quang Đức
4 tháng 12 2016 lúc 9:07

đề sai nhé n là số lẻ thì 2 số không nguyên tố cùng nhau

Băng Dii~
4 tháng 12 2016 lúc 9:14

=> n là chẵn . 

n +1 và n + 3 là số nguyên tố cùng nhau

=> n là lẻ

n + 1 và n + 3 không phải 2 số nguyên tố cùng nhau

Lê Như 	Quỳnh
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 12 2021 lúc 15:04

Gọi d là ước chung của 3n+2 và 2n+1 nên

\(3n+2⋮d\Rightarrow2\left(3n+2\right)=6n+4⋮d\)

\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)=1⋮d\Rightarrow d=1\)

=> 3n+2 và 2n+1 nguyên tố cùng nhau với mọi n

Khách vãng lai đã xóa
Trần Quốc	Huy
22 tháng 12 2021 lúc 15:09

Á à dám lên đây để hỏi bài, sao giống tôi thế :3

Khách vãng lai đã xóa
Kim Seok Jin
Xem chi tiết
Vũ Thị Thanh
25 tháng 3 2021 lúc 19:48

đừng để anh nóng hơi mệt đấy

Khách vãng lai đã xóa
Trang Lê
Xem chi tiết
Đỗ Lê Tú Linh
23 tháng 6 2015 lúc 9:36

Gọi ƯCLN(2n+3;n+2)=d

Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d

=>2n+3 chia hết cho d; 2(n+2)chia hết cho d

=> 2n+3 chia hết cho d;2n+4 chia hết cho d

=>[2n+4-(2n+3)]chia hết cho d

=>2n+4-2n-3 chia hết cho d

=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1

Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau

Chúc bạn học tốt!^_^

Phạm Tiến Việt
Xem chi tiết
Học tập là số 1
30 tháng 7 2017 lúc 18:03

khó z mà vẫn đăg

Lê Trần Quỳnh Anh
28 tháng 11 2017 lúc 19:10

Gọi ƯCLN( 2n+1; 6n+5) là d ( d thuộc n sao)
Ta có: 2n+1 chia hết d

           6n+5 chia hết d

= 3.(2n+1) chia hết d

6n+5 chia hết d

=6n+3 chia hết d

6n+5 chia hết d

(6n+5)-(6n+3) chia hết d

=2 chia hết d

d=1;2

Mà 6n+5 không chia hết 2; suy ra d=1

Vậy 6n+5 và 2n+1 nguyên tố cùng nhau

kick hộ mình nhé

Nguyễn Thị Thanh Lộc
Xem chi tiết
Nguyễn  Thuỳ Trang
23 tháng 11 2015 lúc 14:32

gọi d>0 là ước dung của 2n+1 và 6n+5

d là ước số 3(2n+1)=6n+3

(6n+5)_(6n+3)=2

suy ra d là ước của số lẻ :2n+1 suy ra d=1

vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau

**** nhé Thanh Lộc thông minh

Thân Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 23:11

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau