A= 2 + 2 mũ 3 + 2 mũ 4 + ... + 2 mũ 2010. Hãy so sánh A với 2 mũ 2022 - 2
So sánh
A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2021 và B = 2 mũ 2022
\(A=2+2^2+2^3+...+2^{2021}\\ \Leftrightarrow2A=2^2+2^3+2^4+...+2^{2022}\\ \Leftrightarrow2A-A=\left(2^2+2^3+2^4+...+2^{2022}\right)-\left(2+2^2+2^3+...+2^{2021}\right)\\ \Leftrightarrow A=2^{2022}-2\\ 2^{2022}-2< 2^{2022}\Rightarrow A< B\)
A = 2 + 2 2 + 2 3 + . . . + 2 2021 ⇔ 2 A = 2 2 + 2 3 + 2 4 + . . . + 2 2022 ⇔ 2 A − A = ( 2 2 + 2 3 + 2 4 + . . . + 2 2022 ) − ( 2 + 2 2 + 2 3 + . . . + 2 2021 ) ⇔ A = 2 2022 − 2 2 2022 − 2 < 2 2022 ⇒ A < B
so sánh
A=2+2 mũ 2+...+2 mũ 2021 với B=2 mũ 2022
\(A=2+2^2+...2^{2021}\)
\(\Rightarrow A+1=1+2+2^2+...2^{2021}\)
\(\Rightarrow A+1=\dfrac{2^{2021+1}-1}{2-1}\)
\(\Rightarrow A+1=2^{2022}-1\)
\(\Rightarrow A=2^{2022}-2< 2^{2022}=B\)
\(\Rightarrow A< B\)
1,So sánh
a, 0 mũ 2002 và 0 mũ 2023
b,2022 mũ 0 và 2023 mũ 0
c, 54 mũ 9 và 55 mũ 10
d,(4 + 5) mũ 3 và 4 mũ 2 + 5 mũ 2
đ,9 mũ 2 - 3 mũ 2 và (9-3)mũ 2
Bài 2:Tính giá trị biểu thức
a, 3 mũ 2 x 4 mũ 3 - 3 mũ 2 + 333
b, 5 x 4 mũ 3 + 24 x 5 + 41 mũ 0
c, 2 mũ 3 x 4 mũ 2 + 3 mũ 2 x 5 - 40 x 1 mũ 2023
Giúp mình với,mình đang cần !!
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
Bài 2 :
a) \(3^2.4^3-3^2+333=3^2\left(4^3-1\right)+9.37=9.63+9.37=9\left(63+37\right)=9.100=900\)
b) \(5.4^3+24.5+41^0=20.4^2+20.6+1=20\left(16+6\right)+1=20.22+1=441\)
c) \(2^3.4^2+3^2.5-40.1^{2023}=8.16+9.5-40.1=128+45-40=128+5=133\)
A=1/2-1/2 mũ 2+1/2 mũ 3 -1/ 2 mũ 4+...+1/ 2 mũ 99-1/2 mũ 100 . Hãy so sánh A với 1/3
So sánh
A= 2 mũ 0+ 2 mũ 1+2 mũ 2+ 2 mũ 3+.. 2 mũ 2010 Và B = 2 mũ 2011 -1
\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(A=1+2+2^2+2^3+...+2^{2010}\)
\(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)
\(A=2^{2011}-1\)
Mà \(B=2^{2011}-1\)
=> A = B
Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)
2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)
2A-A hay A=\(2^{2011}-2^0\)
=\(2^{2011}-1\)
Vì \(2^{2011}-1=2^{2011}-1\)
\(\Rightarrow\)A=B
Hok tốt nha!!!
`A``=``2^0``+`2^1``+``2^2``+`2^3``+`...`+``2^(2010)`
`2A=2^1+2^2+2^3+2^4+...+2^(2011)`
`2A-A=(2^1+2^2+2^3+2^4+...+2^(2011))-(2^0+2^1+2^2+2^3+...+2^(2010)`
`A=2^(2011)-1`
`A=B`
So sánh: A= 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 2010 và B=2 mũ 2011 -1
So sánh A và B : 1+2+2 mũ 2 +...+2 mũ 2021 + 2 mũ 2022 và B= 2 mũ 2023 -1 .
Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}+2^{2022}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2023}\right)-\left(1+2+2^2+...+2^{2022}\right)\)
\(\Rightarrow A=2^{2023}-1\)
Ta thấy: \(2^{2023}-1=2^{2023}-1\)
Vậy: \(A=B\)
Cho A =4 mũ 0 + 4 mũ 1 +4 mũ 2 + 4 mũ 3 +..........+4 mũ 20.Hãy so sánh 3A +1 với 63 mũ 7
Ta có: \(A=4^0+4^1+4^2+...+4^{20}\)
Nhân A với 4 ta có:
\(4A=4\left(4^0+4^1+4^2+...+4^{20}\right)\)
=> \(4A-A=\left(4^1+4^2+4^3+...+4^{21}\right)-\left(4^0+4^1+4^2+...+4^{20}\right)\)
=> \(A\left(4-1\right)=4^{21}-4^0\)
=> \(3A=4^{21}-1\)
=> \(3A+1=4^{21}=\left(4^3\right)^7=64^7>63^7\)
Vậy 3A + 1 > 63^7.
cho a = 1 2 3 4 5 6 7 8 9 hãy so sánh 2012 mũ 9 mũ 9 mũ A và 2013 mũ 2 mũ 9 mũ 9