Tồn tại hay không số tự nhiên n thỏa mãn n^2 + 2020 là tích của 3 số liên tiếp
Bài 1: Có tồn tại hay không số tự nhiên a thỏa mãn
(n+2^2017) . (n+15+2^2018) = 3^2019^2020
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
chứng minh nếu n là số tự nhiên thỏa mãn\(\frac{n^2-1}{3}\) là tích của hai số tự nhiên liên tiếp thì n là tổng 2 số tự nhiên liên tiếp
Có tồn tại hay không số nguyên dương \(n\) thỏa mãn điều kiện \(4^n+210\) là tích của không ít hơn hai số nguyên dương liên tiếp?
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em với ạ!
Em cám ơn nhiều ạ!
Có tồn tại số tự nhiên n nào mà 2020+n^2 là một số chính phương hay không?Vì sao?
Tồn tại hay không số tự nhiên m thỏa mãn n2+n+1 chia hết cho 2525? Vì sao?
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
có tồn tại hay không số tự nhiên n thỏa mãn 2013n + 1 chia hết cho 102014?
Chứng minh rằng với mọi số tự nhiên n luôn tồn tại n số tự nhiên liên tiếp không là số nguyên tố
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...