Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Cương
Xem chi tiết
Đinh Thùy Linh
12 tháng 6 2016 lúc 16:06

Bài này mình không tính nhanh được, còn nếu tính bình thường thì:

Chắc bạn đã biết cách tính tổng của dãy số cách đều, ta có: \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) 

Do đó tổng cần tìm của bạn là:

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+50}\)

\(S=\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+\frac{1}{\frac{4\cdot5}{2}}+...+\frac{1}{\frac{50\cdot51}{2}}=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{50\cdot51}\)

Vậy, \(\frac{1}{2}S=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\)

\(\frac{1}{2}S=\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+...+\frac{51-50}{50\cdot51}\)

\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}=\frac{1}{2}-\frac{1}{51}=\frac{51-2}{2\cdot51}=\frac{49}{2\cdot51}\)

Vậy \(S=\frac{49}{51}\)

Bài này chắc không phải lớp 4 nhé bạn!

phan ngo ngoc bich
Xem chi tiết
nhok họ nguyễn
29 tháng 3 2017 lúc 21:03

xin lỗi mình làm zùi nhưng để quên vở ở lớp zùi và bt của mình cũng sặp chết rồi

Nguyễn Hương Giang
Xem chi tiết
Giang Hoang
19 tháng 2 2016 lúc 20:29

batngo

MONKEY D LUFFY
19 tháng 2 2016 lúc 23:05

banh

Lovers
20 tháng 2 2016 lúc 18:44

Sao lại chẳng có quy luật thế này

Ở đầu mẫu là 1;2;3;4;5;.... Cuối lại là 2100-1

Nguyễn Thị Khánh Chi
Xem chi tiết
Lê Văn Phong
Xem chi tiết
MIKO CUTE
Xem chi tiết
Minh Triều
16 tháng 1 2016 lúc 18:37

\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}<1\)

\(b,\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\)

\(<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}<1\)

=>điều cần chứng minh

Khải oppa
16 tháng 1 2016 lúc 19:15

Bai nay de ma bn! Neu bn biet cong thuc la lam dc a!!!

Mỹ Anh
Xem chi tiết
Lục Việt Anh
12 tháng 8 2016 lúc 20:23

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp

ahihi
Xem chi tiết
Trần Khánh Linh
7 tháng 3 2017 lúc 12:05

dấu * là z zậy

Nguyễn Thị Thu Huyền
7 tháng 3 2017 lúc 12:11

là nhân 

dễ ợt

NATSU DRAGNEEL
Xem chi tiết
Trần Văn Giáp
18 tháng 7 2017 lúc 20:48

 1+1/22+1/32+...+1/100​2​ <1+1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<2 (dpcm)

k cho mk nha : thắc mắc liên hệ mk giúp cho.

l҉o҉n҉g҉ d҉z҉
18 tháng 7 2017 lúc 20:49

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\) 

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ................

         \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2-\frac{1}{100}< 2\)

Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\) (đpcm)

Dũng Lê Trí
18 tháng 7 2017 lúc 20:55

Đặt cái ban đầu là A sau đó ta có \(B=1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow B=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+1-\frac{1}{100}\)

\(B=2-\frac{1}{100}< 2\)

\(\Rightarrow A< B< 2\left(đpcm\right)\)