Câu 1 :\(\frac{9.11+19.9}{27.5-27.15}\)
Câu 2 : \(\frac{6^5.8^2.21}{49}\)
\(\frac{9.11+19.9}{27.5-27.15}\)\(\frac{23.13+23}{14.47-14}\)
đây là 2 câu nha
ở giữa lak dấu nhân ak??????
=-1/2 nha bn!!!!!!
\(\frac{6^5.8^2.21}{49}\)
Số lẻ lắm bn!!!!!!!\(\frac{1492992}{7}\)
\(\frac{6^5.8^2.21}{49}\)
Giúp mik với
2. Rút gọn
A=\(\frac{49^2.3^{11}}{81^2.21^5}\)
\(A=\frac{49^2\cdot3^{11}}{81^2\cdot21^5}\)
\(=\frac{\left(7^2\right)^2\cdot3^{11}}{\left(3^4\right)^2\cdot\left(3\cdot7\right)^5}\)
\(=\frac{7^4\cdot3^{11}}{3^8\cdot3^5\cdot7^5}\)
\(=\frac{7^4\cdot3^{11}}{3^{13}\cdot7^5}\)
\(=\frac{1}{3^2\cdot7}=\frac{1}{63}\)
Bài làm :
Ta có :
\(A=\frac{49^2\cdot3^{11}}{81^2\cdot21^5}\)
\(A=\frac{\left(7^2\right)^2\cdot3^{11}}{\left(3^4\right)^2\cdot\left(3\cdot7\right)^5}\)
\(A=\frac{7^4\cdot3^{11}}{3^8\cdot3^5\cdot7^5}\)
\(A=\frac{7^4\cdot3^{11}}{3^{13}\cdot7^5}\)
\(A=\frac{1}{3^2\cdot7}\)
\(A=\frac{1}{63}\)
Vậy A=1/63
\(A=\frac{49^2.3^{11}}{81^2.21^5}\)
\(=\frac{\left(7^2\right)^2.3^{11}}{\left(3^4\right)^2.\left(3.7\right)^5}\)
\(=\frac{7^4.3^{11}}{3^8.3^5.7^5}\)
\(=\frac{1}{3^2.7}\)
\(=\frac{1}{63}\)
Học tốt
a,\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)\(=0\)
b,\(\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{50-x}+\frac{50}{49-x}\)
(-làm đc 1 câu=1 tick
-làm đc 2 câu=2 tick)
a) \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
\(\Leftrightarrow\)\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow\)\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\)
\(\Leftrightarrow\)\(x=-100\)
Vậy...
câu 1:=\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
=\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
=\(^{(x+100).(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4})=0}\)
=\(\orbr{\begin{cases}100+x=0\\\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}=0\left(voly\right)\end{cases}}\Leftrightarrow100+x=0\Leftrightarrow x=-100\)
A=\(\frac{49^5.8^{10}}{14^7.49.4^{13}}-\frac{\frac{7}{10}-\frac{7}{12}+\frac{7}{5}}{0,8-\frac{2}{3}+\frac{8}{5}}\)
Có:495.810/147.49.413=710.230/233.79=7/8 7/10-7/12+7/5 / 8/10-8/12+8/5=7(1/10-1/12+1/5) / 8(1/10-1/12+1/5)=7/8 =>A=7/8-7/8=0 xin lỗi nha mik ghi hơi khó hiểu chút vì mik mới dùng online math.HOK TỐT
A= \(\frac{49^5.8^{10}}{14^7.49.4^{13}}-\frac{\frac{7}{10}-\frac{7}{12}+\frac{7}{5}}{0,8-\frac{2}{3}+\frac{8}{5}}\)
A= \(\frac{7^{10}.2^{30}}{2^7.7^9.2^{26}}-\frac{7\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}{\frac{8}{10}-\frac{2.4}{3.4}+\frac{8}{5}}\)=\(\frac{7^{10}.2^{30}}{7^9.2^{33}}-\frac{7\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}{\frac{8}{10}-\frac{2.4}{3.4}+\frac{8}{5}}\)
A= \(\frac{7^{ }}{2^3}-\frac{7\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}{8.\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}\)
A= \(\frac{7^{ }}{8}-\frac{7}{8}=0\)
Tìm giá trị của các biểu thức sau. (Câu trả lời có lời giải):
\(a.\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\)
\(b.\frac{2^7.9^3}{6^5.8^2}=\)
\(c.\frac{6^3+3.6^2+3^3}{-13}\)
a) (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)) . x =\(\frac{1}{3}\)
b) (\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)) : x = \(\frac{2}{3}\)
c) (\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)) . x = \(\frac{2}{3}\)
Mik đang cần gấp
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
b)( \(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{9}-\frac{2}{11}_{ }\)):x =\(\frac{2}{3}\)
Giống câu a
Tính các tổng sau
a.6/2.5+6/5.8+6/8.11+...+6/44.47+6/47.50
b.1/9.11+1/11.13+...+1/41.43+1/43.45
a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)
\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=1-\frac{1}{25}\)
\(=\frac{24}{25}\)
đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)
\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)
\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)
\(2A=\frac{1}{9}-\frac{1}{45}\)
\(2A=\frac{4}{45}\)
\(A=\frac{4}{45}\div2\)
\(A=\frac{2}{45}\)