Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thành Đạt
Xem chi tiết
Jun Jun
Xem chi tiết
Lê Thị Hướng
Xem chi tiết
Trần Thị Khiêm
16 tháng 8 lúc 8:35
Đề bài:

Xét các số nguyên \(x_{1} , x_{2} , \ldots , x_{5}\) thỏa mãn

\(\left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots \left(\right. 1 + x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } \left(\right. 1 - x_{1} \left.\right) \left(\right. 1 - x_{2} \left.\right) \hdots \left(\right. 1 - x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } x .\)

Chứng minh rằng

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)

Lời giải:

Gọi

\(P = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) , Q = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Theo đề: \(P = Q = x\).

Bước 1: Xét tích \(P Q\)

\(P Q = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) \left(\right. 1 - x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)

Bước 2: Sử dụng giả thiết \(P = Q\)

Từ \(P = Q\), suy ra:

\(\prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Chuyển vế:

\(& \prod_{i = 1}^{5} \frac{1 + x_{i}}{1 - x_{i}} = 1. & & (\text{1})\)

Bước 3: Phân tích trường hợpNếu có một \(x_{i} = 1\), thì vế phải (1) có mẫu số bằng 0 → đẳng thức chỉ đúng khi đồng thời tử số cũng bằng 0, tức là có một \(x_{j} = - 1\).
Trong trường hợp này, trong tích \(P = \left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots\), sẽ có một thừa số bằng 0.
\(x = 0\).
Do đó \(x x_{1} x_{2} \hdots x_{5} = 0\).Nếu có một \(x_{i} = - 1\), tương tự, \(x = 0\).
⇒ Kết quả đúng.Nếu không có số nào bằng \(\pm 1\):
Khi đó (1) hoàn toàn xác định.
Lưu ý rằng \(\frac{1 + x_{i}}{1 - x_{i}}\) là một phân số không bằng 0.
Tích của 5 phân số bằng 1.
⇒ Có thể xảy ra, nhưng ta cần liên hệ với tích \(P Q\):
\(P Q = P^{2} = x^{2} = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)
Nếu không có số nào bằng \(\pm 1\), thì mỗi \(1 - x_{i}^{2} \neq 0\). Vế phải khác 0, suy ra \(x \neq 0\).
Nhưng khi đó \(x^{2} = \prod \left(\right. 1 - x_{i}^{2} \left.\right)\).
Nghĩa là \(x\) chia hết cho tích \(\prod x_{i}\) (do đồng dư mod \(x_{i}\), lập luận chia hết)…
Kết quả là hoặc \(x = 0\) hoặc một trong các \(x_{i} = 0\).
⇒ Trong cả hai trường hợp, \(x x_{1} x_{2} \hdots x_{5} = 0\).Kết luận:

Dù xảy ra trường hợp nào thì ta luôn có:

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 4 2018 lúc 8:23

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2017 lúc 3:19

Chọn đáp án A

conan
Xem chi tiết
Akai Haruma
17 tháng 7 2021 lúc 22:22

Bạn vui lòng gõ lại biểu thức $P(x)$ để được hỗ trợ tốt hơn.

 

Hồ Cẩm Vân
Xem chi tiết
Lê Bảo Nghiêm
Xem chi tiết
Cao Thành Danh
11 tháng 1 2021 lúc 22:54

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 2 2019 lúc 4:00

Chọn B.

Phương pháp:

Biến đổi đẳng thức đã cho để đưa về dạng phương trình đường tròn (C) tâm I bán kính R.

Từ đó ta đưa bài toán về dạng bài tìm M x ; y ∈ C  để O M - a lớn nhất hoặc nhỏ nhất.

Xét các trường hợp xảy ra để tìm a.

Cách giải: