cho a là số nguyên.CMR: |a| < 5 <=>-5 <a<5
LÀM ĐẦY ĐỦ GIÙM MIK
cho a là số nguyên.CMR : /a/ < 5 khi và chỉ khi -5<a<5
Cho a là 1 số nguyên.Cmr GTTĐ của a <5 suy ra -5<a<5
Cho a là số nguyên.CMR:
/a/<5 <=> -5<a<5
GIÚP MÌNH NHÉ GẤP KINH KHỦNG!!!!!!!!!!!!!!!
Cho a, b là 2 số nguyên dương sao cho A = a2 + b2/a.b + 1 là số nguyên.CMR A là số chính phương
Cho x là số nguyên.CMR
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)luôn nhận giá trị nguyên
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)
\(=\frac{x^5}{30}-\frac{5x^3}{30}+\frac{4x}{30}\)
\(=\frac{x^5-5x^3+4x}{30}\)
\(=\frac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\frac{x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left(x^2-1\right)\left(x^2-4\right)}{30}\)
\(=\frac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\)
\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích của 5 số tự nguyên liên tiếp nên chia hết cho 2 , 3 , 5.
Mà các số 2 , 3 , 5 nguyên tố với nhau từng đôi một nên \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 . 3 .5 = 30
Do đó \(M\in Z\)
Vậy....
Cho a là 1 số nguyên.CMR:
a.Nếu a dương thì số liền sau a cũng dương
b.Nếu a âm thì số liền sau a cũng âm
Bài 1:Cho a là số nguyên.CMR:
a.nếu a dương thì số liền sau a cũng dương.
b.nếu a âm thì số liền trước a cũng âm
c.có thể kết luận gì về số liền trước của 1 số dương và số liền sau của 1 số âm
Bài 1:Cho 31 số nguyên trog đó tổng của 5 số bất kì là 1 số dương .CMR tổng của 31 số đó là 1 số dương.
Bài 1:
a) Gọi số liền sau là a+1. Vì a dương (a<0) nên số liền sau a hơn a 1 đơn vị nên cũng là số dương.=>đpcm.
b) Ta có:Nếu a âm thì a<0. Số liền trước a nhỏ hơn a nên cũng là số âm.
c) Vậy ta có thể kết luận: Số liền trước của 1 số dương chua chắc là số dương ( Trường hợp a=1, số liền trước a là 0, không phải số dương). Số liền sau của một số âm chưa chắc là số âm ( Trường hợp a=-1 thì số liền sau a là 0 và không là số âm).
Cho a,b,c là ba số nguyên.CMR \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1\)
sửa đề: a,b,c là 3 số nguyên dương
\(\text{vì }a,b,c\text{ là 3 số nguyên dương}\)
\(\text{Có: }\hept{\begin{cases}\frac{a}{a+b+c}< \frac{a}{b+c}\\\frac{b}{a+b+c}< \frac{b}{c+a}\\\frac{c}{a+b+c}< \frac{c}{a+b}\end{cases}}\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1 \)
Bài 3 : Cho x là số nguyên.Cmr :
B= x4 - 4x3 - 2x2 + 12x + 9 là bình phương số nguyên
Bài 4 : Cho x,y,z là số nguyên.Cmr :
C= 4x.(x + y).(x + y + z).(x + z) + y2z2 là một số chính phương
Giúp mình nha.Mai là hạn cuối rồi!
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)
\(=\left(x^2-2x-3\right)^2\)
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)