chung minh S=1+3+3^2+3^3+...+3^202+3^203
Cho S = 1/101 + 1/202 + 1/203 + ... + 1/299 + 1/300. Chứng minh rằng 2/3 < S < 2
Cho S = 1/201 + 1/202 + 1/203 + ... + 1/299 + 1/300. Chứng minh rằng 1/3 < S < 1/2
Cho S = 1/201 + 1/202 + 1/203 + ... + 1/299 + 1/300. Chứng minh rằng 1/3 < S < 1/2
1/201>1/300,1/202>1/300.................1/300=1/300 =>S>1/300.100=1/3 1/201<1/200, 1/202<1/300.................1/300<1/200=>S<1/200.100=1/2
1-2+3:2-3+4:3-4+5:...:201-202+203
Cho biểu thức :
S = 1+ 3 +32+33+...+3202+3203
a)Chứng tỏ rằng tổng S chia hết cho 52
b)Tìm chữ số tận cùng của S
giải dài lắm bạn ơi,mik làm câu b thui nhé
S = 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) x 3
Sx 3 = 3 + 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 203 + 3 ^ 204
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) + 3 ^ 204 - 1
S x3 = S + 3 ^ 204 - 1
S x 2 = 3 ^ 204 - 1 ( cũng bớt cả 2 vế đi S )
S = 3 ^ 204 - 1 : 2
S = 3 ^ 4 x 51 - 1 : 2
S = (3^4) ^ 51 - 1 : 2
S = 81 ^ 51 - 1 : 2
Vì 81 ^ 51 luôn có t/c = 1 ( do số có t/c =1 khi nâng lên bất kì lũy thừa nào đều có t/c = 1)
=> 81 ^ 51 - 1 co t/c = 0
=> 81 ^ 51 - 1 : 2 co t/c = 5
Hay S có t/c = 5
Vay S co t/c =5
Ung ho nha
so sanh 3^205+28/3^203+2 và 3^204+19/3^202+1
So sánh A và B
A=3205 + 28/ 3203 + 2
B= 3204 +19/ 3202 +1
cho D=1/7^2-2/7^3+3/7^4-4/7^5+.....+201/7^202-202/7^203. Hãy so sánh D với 1/64.
em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé
D = \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
7 \(\times\) D = \(\dfrac{1}{7}\) - \(\dfrac{2}{7^2}\) + \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\) + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)
7D +D = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
D = ( \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8
Đặt B = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\)
7 \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)
7B + B = 1 - \(\dfrac{1}{7^{202}}\)
B = ( 1 - \(\dfrac{1}{7^{202}}\)) : 8
D = [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8 - \(\dfrac{202}{7^{203}}\)] : 8
D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)
so sanh M va N biet M= 3^205+28/3^203+2 N=3^204+19/3^202+1