Tìm số nguyên n để:
a,n+5 chia hết cho n-1
n+5 chia hết cho n+2
b,2n-4 chia hết cho n+2
c,6n+4 chia hết cho 2n+1
d,3-2n chia hết cho n+1
Bạn nào giải được thì giúp em với nhé,em cảm ơn trước vậy!
Mn giúp mik vs ạ ! Đang gấp ak.
Bài 6. Tìm số nguyên n để
a) n + 5 chia hết cho n -1 ;
b) 2n - 4 chia hết cho n + 2
c) 6n + 4 chia hết cho 2n + 1
d) 3 - 2n chia hết cho n+1
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
Tìm số nguyên n biết :
a) n+5 chia hết cho n-1
b) 2n-4 chia hết cho n+2
c) 6n+4 chia hết cho 2n+1
d) 3-2n chia hết cho n+1
Mọi người ơi, giúp mk đi, mk cần rất gấp bài này. Mai đi học phải nộp r.
Cảm ơn trước nhé.
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
Tìm số nguyên n để:
a/ n+5 chia hết cho n-1
b/ 2n - 4 chia hết cho n + 2
c/ 6n + 4 chia hết cho 2n + 1
d/ 3 - 2n chia hết cho n + 1
GIÚP MK NHANH NHÉ MN :*
\(a,n+5⋮n-1\)
mà \(n-1⋮n-1\)
\(\Leftrightarrow6⋮n-1\)
\(n-1\in U\left(6\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n-1=2\end{cases}}\Rightarrow\orbr{\begin{cases}n=2\\n=3\end{cases}}\)
\(\orbr{\begin{cases}n-1=3\\n-1=6\end{cases}}\Rightarrow\orbr{\begin{cases}n=4\\n=7\end{cases}}\)
vậy...........
tìm n bt n e N
a) 2n + 1 chia hết cho 6 - n
b) 2n + 7 chia hết cho n + 1
c) 3n chia hết cho 5 - 2n
d) 4n + 3 chia hết cho 2n - 6
e) 2n + 5 chia hết cho n - 5
g) n + 5 chia hết cho 2 - 2n
h) n2 - n + 13 chia hết cho n + 3
k) n2 - n + 11 chia hết n - 1
các bạn làm giúp mk nhé!!!! ai lm đúng thì mk sẽ tick!!! mk cảm ơn mn trước nhé!!!! ^.^
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Tìm số nguyên n biết
a,n+5 chia hết cho n-1
b,2n-4 chia hết cho n+2
c,6n+4 chia hết cho 2n+1
d,3-2n chia hết cho n+1
Tìm số nguyên n để:
a,n-7 chia hết cho n-5
b,n+3 chia hết cho n-2
c,2n-4 chia hết cho n+2
d,2n+1 chia hết cho n-3
e,6n+4 chia hết cho 2n+1
f,3-2n chia hết cho n+1
g,(n+2)^2 -3(n+2)+3 chia hết cho (n+2)
=>(n2+3n)+(3n+9)+2 chia hết cho n+3
=>n(n+3)+3(n+3)+2 chia hết cho n+3
=>(n+3)(n+3)+2 chia hết cho n+3
Mà (n+3)(n+3) chia hết cho n+3
=>2 chia hết cho n+3
=> n+3 thuộc Ư(2)={1;2;-1;-2}
=>n thuộc {-2;-1;-4;-5}
Để A nguyên
=>n2-3n+1 chia hết cho n+1
=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1
=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1
Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 thuộc Ư(1)={1;-1}
=>n thuộc {0;-2}
Tìm số nguyên n để :
a) n + 5 chia hết cho n -1
b) 2n - 4 chia hết cho n + 2
c) 6n - 4 chia hết cho 2n + 1
d) 3 - 2n chia hết cho n + 1
TÌM n THUỘC N ,biết:
a)n+4 chia hết cho n
b)3n +11 chia hết cho n +2
c)n + 8 chia hết cho n+3
d)2n+3 chia hết cho 3n+1
e)12-n chai hết cho 8-n
f) 27-5n chia hết cho n +3
giúp em vs ạ/em cảm mơn
a. n + 4 \(⋮\) n
\(\Rightarrow\left\{{}\begin{matrix}n⋮n\\4⋮n\end{matrix}\right.\)
4 \(⋮\) n
\(\Rightarrow\) n \(\in\) Ư (4) = {1; 2; 4}
\(\Rightarrow\) n \(\in\) {1; 2; 4}
c. n + 8 \(⋮\) n + 3
n + 3 + 5 \(⋮\) n + 3
\(\Rightarrow\left\{{}\begin{matrix}n+3\text{}⋮n+3\\5⋮n+3\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 3
\(\Rightarrow\) n + 3 \(\in\) Ư (5) = {1; 5}
n + 3 | 1 | 5 |
n | vô lí | 2 |
\(\Rightarrow\) n = 2
b. 3n + 11 \(⋮\) n + 2
3n + 6 + 5 \(⋮\) n + 2
3(n + 2) + 5 \(⋮\) n + 2
\(\Rightarrow\left\{{}\begin{matrix}3\left(n+2\right)\text{}⋮n+2\\5⋮n+2\end{matrix}\right.\)
\(\Rightarrow\) 5 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư (5) = {1; 5}
n + 2 | 1 | 5 |
n | vô lí | 3 |
\(\Rightarrow\) n = 3
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)