Tính tổng các phân số sau:
\(y=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+...+\frac{1}{496\cdot501}\)
Tính nhanh bằng cách thuận tiện nhất
a) 10,11+11,12+11,13+...+98,99+99,10
b) \(\frac{1}{1\cdot6}\cdot\frac{1}{6\cdot11}\cdot\frac{1}{11\cdot16}\cdot...\cdot\frac{1}{491\cdot496}\cdot\frac{1}{496\cdot501}\)
Tính \(\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+.....+\frac{1}{96\cdot101}\)
Gọi A=1/1x6+1/6x11+1/11x16+...+1/96x101
A=1/1x6+1/6x11+1/11x16+...+1/96x101
5A=5/1x6+5/6x11+5/11x16+...+5/96x101
5A=1-1/6+1/6-1/11+1/11-1/16+...+1/96-1/101
5A=1-1/101
5A=100/101
A=100/101:5
A=20/101.
Nếu đúng thì kết bạn với mình nhé.Mình học lớp 6C của trường THCS An Khê.Tên Đỗ Đường Hùng.
= 1/5 . (5/1.6 + 5/6.11 + ...... + 5/96.101)
= 1/5 . (1-1/6+1/6-1/11+.....+1/96-1/101)
= 1/5.(1-1/101)
= 1/5 . 100/101
= 20/101
Tk mk nha
=1/1-1/6+1/6-1/11+1/11-1/16+...+1/96-1/101 =1-1/101=100/101
Biến đổi biểu thức sau:
\(\frac{5}{1\cdot6}=\frac{1}{?}+\frac{1}{?}\)
a) Từ đó, tính giá trị biểu thức:
\(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{2017\cdot2022}\)
b) Chứng minh \(B< A\)biết:
\(B=\frac{1}{6^2}+\frac{1}{11^2}+\frac{1}{16^2}+...+\frac{1}{2022^2}\)
a) \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+......+\frac{1}{2017.2022}\)
\(5A=5.\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{2017.2022}\right)\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+......+\frac{5}{2017.2022}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+........+\frac{1}{2017}-\frac{1}{2022}\)
\(5A=1-\frac{1}{2022}\)
\(5A=\frac{2022}{2022}-\frac{1}{2022}\)
\(5A=\frac{2021}{2022}\)
\(A=\frac{2021}{2022}\div5\)
\(A=\frac{20201}{10110}\)
TL:
\(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\)
@@@@@@@@@@
HT
\(A=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{^{5^2}}{26\cdot31}\)
\(A=\frac{5\cdot5}{1.6}+\frac{5.5}{6.11}+...+\frac{5.5}{26.31}\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5\times\frac{30}{31}\)
\(=\frac{150}{31}\)
\(s=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}\)
tại sao
\(S=5\times\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}\right)\)
\(=5\times\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\right)\)
\(=5\times\left(1-\frac{1}{16}\right)\)
\(=5\times\frac{15}{16}=\frac{75}{16}\)
Vậy \(S=\frac{75}{16}\)
=5*(1-1/6+1/6-1/11+1/11-1/16)
=5*(1-1/16)
=5-5/16
So sánh
\(\frac{1}{11\cdot11}+\frac{1}{10\cdot10}+...+\frac{1}{6\cdot6}+\frac{1}{5\cdot5}\) và \(\frac{7}{44}\)
Cách 2:
\(\frac{1}{11.11}+\frac{1}{10.10}+....+\frac{1}{5.5}
a) A = \(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot5}+...+\frac{4}{107\cdot111}\)
b) B = \(\frac{6}{15\cdot18}+\frac{6}{18\cdot21}+\frac{6}{21\cdot24}+...+\frac{6}{87\cdot90}\)
c) C = \(\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{51\cdot56}\)
d) D = \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
a) A = 1/3 - 1/7 + 1/7 - 1/11 +......+1/107 - 1/111
A = 1/3 - 1/111
A = ..............Bạn tự tính nhé!
b) B = 2.(3/15.18 + 3/18.21 +........+3/87.90)
B = 2.(1/15 - 1/18 + 1/18 - 1/21 +........+1/87 - 1/90)
B = 2.(1/15 - 1/90)
B = 2.5/90
B =......Tự tính nhé!
C ; D làm tương tự nhé!
a)
A=\(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{107.111}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-.....+\frac{1}{107}-\frac{1}{111}=\frac{1}{3}-\frac{1}{111}=\frac{108}{333}\)
Tính tổng 50 số hạng đầu tiên của dãy : \(\frac{1}{2\cdot4};\frac{1}{4\cdot6};\frac{1}{6\cdot8};\frac{1}{8\cdot10};...\)
Gán A=2 ; B=0 Nhập công thức : B=1/A(A+2) : A=A+2 : C=C+B
\(\sqrt[2]{4\cdot9\frac{8}{8}+\frac{48\cdot11+5}{1\cdot\frac{814}{5+\frac{6145}{1\cdot\frac{821}{614}}}}}2548-\frac{8452}{14\cdot\frac{58}{96\cdot\frac{41}{\frac{24}{1\cdot\frac{975545}{1421+\frac{84874}{\frac{1+2+3+4+5+6+7+8+9\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9}{2\cdot\frac{2}{1}}}}}}}}\)