giá tị nhỏ nhất của biểu thức A=/x-22015/+2 là
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ac=7 . Gọi m là giá trị nhỏ nhất của biểu thức \(Q=\frac{11a+11b+12c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
a) Biết m đạt giá trị nhỏ nhất khi (a;b;c)=(m;n;p). Tính giá trị của biểu thức P=2p+9n+1945m
b)Biết m đạt gái tị nhỏ nhất thì a=(m/n).c , trong đó m,n là các số nguyên dương và phân số m/n tối giản . Tính giá tị biểu thức S=2m+5n
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)
tính giá tị lớn nhất , nhỏ nhất của biểu thức
a) 1-4x-2x2
b) x2-4x+y2+2y-5
a) Ta có : \(1-4x-2x^2=-\left(2x^2+4x-1\right)=-[2(x^2+2x+1)-3]=-[2(x+1)^2-3]\)
Lại có \(2\left(x+1\right)^2\ge0=>-[2(x+1)^2-3]\le-3\)
Dấu"=" xảy ra khi và chỉ khi \(x+1=0=>x=-1\)
Vậy giá trị lớn nhất của biểu thức đã cho bằng -3 khi x=-1
b)\(x^2-4x+y^2+2y-5=\left(x-2\right)^2+\left(y+1\right)^2-10\)
Lại có : \(\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0=>\left(x-2\right)^2+\left(y+1\right)^2-10\ge-10\)
Dấu "=" xảy ra khi và chỉ khi \(x-2=y+1=0=>x=2;y=-1\)
\(\text{a) }1-4x-2x^2\)
\(=\left(-2x^2-4x-2\right)+3\)
\(=-2\left(x^2+2x+1\right)+3\)
\(=-2\left(x+1\right)^2+3\)
\(\text{Vì }-2\left(x+1\right)^2\le0\)
\(\text{nên }-2\left(x+1\right)^2+3\le3\)
\(\text{Do đó: }GTLN=3\), dấu bằng xảy ra khi \(x=-1\)
\(\text{b) }x^2-4x+y^2+2y-5\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)-10\)
\(=\left(x-2\right)^2+\left(y+1\right)^2-10\)
\(\text{Vì }\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\text{nên }\left(x-2\right)^2+\left(y+1\right)^2\ge0\)
\(\text{hay }\left(x-2\right)^2+\left(y+1\right)^2-10\ge-10\)
\(\text{Do đó: }GTNN=-10\), dấu bằng xảy ra tai \(x=2\)và \(y=-1\)
Tìm giá tị nhỏ nhất, lớn nhất của các biểu thức sau
a, A=2.|3x-2|-1
b, B=x2+3|2y-2|-1
c, C=5-|2x-1|
d, D=1/|x-2|+3
Min A = -1 <-> x=2/3
Min B =2 <-> x=0 ; y=1
Max C = 5 <-> x=1/2
Max D = 1/3 <-> x=2
a)\(\left|3x-2\right|\ge0\Rightarrow2\left|3x-2\right|\ge0\Rightarrow A=2\left|3x-2\right|-1\ge-1\)
=>Amin=-1 <=>|3x-2|=0 <=>3x-2=0 <=>3x=2<=>x=2/3
b)\(x^2\ge0;\left|2y-2\right|\ge0\Leftrightarrow3\left|3y-2\right|\ge0\)
=>\(x^2+3\left|2y-2\right|\ge0\Rightarrow B=x^2+3\left|2y-2\right|-1\ge-1\)
=>Bmin=-1 <=>x2=0 và |2y-2|=0 <=> x=0 và y=1
tìm giá tị nhỏ nhất của biểu thức B=|2-4x|-2,5
giúp mình với nhanh nhá
Answer:
Có: \(\left|2-4x\right|\ge0\Rightarrow\left|2-4x\right|-2,5\ge-2,5\)
Dấu "=" xảy ra khi: \(2x-4x=0\Rightarrow4x=2\Rightarrow x=\frac{1}{2}\)
Vậy giá trị nhỏ nhất của B = -2,5 khi \(x=\frac{1}{2}\)
tìm giá tị nhỏ nhất của biểu thức sau: H= lx-3l + l4+xl
H=/3-x/+/4+x/>=/3-x+x+4/=7. Min=7 khi (3-x)(4+x)>=0 hay -4<=x<=3
tìm giá tị lớn nhất của biểu thức để 1/x2+2010
Để \(\frac{1}{x^2+2010}\)đạt GTLN thì \(x^2+2010\)đạt GTNN mà \(x^2\)\(\ge\)0
\(\Leftrightarrow\)\(x^2+2010\ge\)2010
\(\Rightarrow\)\(\frac{1}{x^2+2010}\le\frac{1}{2010}\)khi x = 0
Vậy \(\frac{1}{x^2+2010}\)đạt GTLN bằng \(\frac{1}{2010}\)khi x = 0
Tìm giá tị nhỏ nhất của:
\(A=x^2-2x+5\)
\(A=\left(x-1\right)^2+4>=4\forall x\)
Dấu '=' xảy ra khi x=1
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=1\)
câu 1: giá trị nhỏ nhất của biểu thức |2.x -13|-7/4 là.....
câu 2: giá trị nhỏ nhất của biểu thức |1-3.x| cộng 1 là......
câu 3: giá trị lớn nhất của biểu thức q=3.|1-2.x|-5 là.....
câu 4:giá trị nguyên nhỏ nhất của n để biểu thức A= \(\frac{3n+9}{n-4}\) có giá trị là 1 số nguyên là......
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)