Tính nhanh: \(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}\)
Tính nhanh :
A = \(\frac{6}{4}+\frac{6}{28}+\frac{6}{130}+\frac{6}{70}+\frac{6}{208}\)
A=\(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
A=\(\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+\frac{6}{7\cdot10}+\frac{6}{10\cdot13}+\frac{6}{13\cdot16}\)
A:2=\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)
A:2=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\)\(\frac{1}{16}\)
A:2=\(1-\frac{1}{16}\)
A:2=\(\frac{15}{16}\)
A=\(\frac{15}{8}\)
vậy ...
\(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{1}{208}\)
\(\Rightarrow A=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+\frac{6}{7\cdot10}+\frac{6}{10\cdot13}+\frac{6}{13\cdot16}\)
\(\Rightarrow\)\(\frac{3}{6}A=\frac{3}{6}\cdot\left(\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+\frac{6}{7\cdot10}+\frac{6}{10\cdot13}+\frac{1}{13\cdot16}\right)\)
\(\Rightarrow\)\(\frac{3}{6}A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)
\(\Rightarrow\)\(\frac{3}{6}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(\Rightarrow\)\(\frac{3}{6}A=1-\frac{1}{16}\)
\(\Rightarrow\)\(\frac{3}{6}A=\frac{15}{16}\)
\(\Rightarrow A=\frac{15}{16}:\frac{3}{6}\Rightarrow A=\frac{15}{8}\)
\(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{280}\)
Giúp mik nha, mik cần rất gấp!!!!! nhanh nha tick cho!!!!! :)
Bạn ơi, có chắc là 6/280 ở cuối không.
Trả lời nhanh để mink giải câu này cho
lộn \(\frac{6}{208}\) chứ ko phải 6/ 280
\(\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+.....+\frac{6}{13.16}\)
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức ta có :
\(\frac{6}{1.4}=\frac{6}{3}.\left(1-\frac{1}{4}\right)\)
\(\frac{6}{4.7}=\frac{6}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)\)
.....................................
\(\frac{6}{13.16}=\frac{6}{3}.\left(\frac{1}{13}-\frac{1}{16}\right)\)
\(\Rightarrow\)\(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+......+\frac{6}{208}=\frac{6}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{13}-\frac{1}{16}\right)\)
\(\Rightarrow\)\(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+.....+\frac{6}{208}=\frac{6}{3}.\left(1-\frac{1}{16}\right)=\frac{6}{3}.\left(\frac{15}{16}\right)=\frac{15}{8}\)
Mink chắc chắn, ai thấy đúng thì ủng hộ mink nha !!!
Bài 1: Tính nhanh
\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}+\frac{1}{x^2+23x+130}+\frac{1}{x^2+29x+208}\)
Bài 2: Tìm a; b; c thỏa mãn đẳng thức: a2 - 2a + b2 + 4b +4c2 - 4c + 6 =0
Bài 1:
\(=\dfrac{1}{\left(x+1\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+10\right)}+\dfrac{1}{\left(x+10\right)\left(x+13\right)}+\dfrac{1}{\left(x+13\right)\left(x+16\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}+\dfrac{3}{\left(x+10\right)\left(x+13\right)}+\dfrac{3}{\left(x+13\right)\cdot\left(x+16\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+13}+\dfrac{1}{x+13}-\dfrac{1}{x+16}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{x+1}-\dfrac{1}{x+16}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{x+16-x-1}{\left(x+1\right)\left(x+16\right)}=\dfrac{5}{\left(x+1\right)\left(x+16\right)}\)
Bài 2:
\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+4\right)^2+\left(2c-1\right)^2=0\)
Dấu '=' xảy ra khi a=1; b=-4; c=1/2
Tính nhanh :
\(A=\frac{12}{4}+\frac{12}{28}+\frac{12}{70}+\frac{12}{130}+...+\frac{12}{94.97}\)
Tính nhanh:
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
b)\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{940}\)
c) A= \(\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
d) M= \((1-\frac{1000}{2016}).(1-\frac{1001}{2016}).(1-\frac{1002}{2016})...(1-\frac{2017}{2016})\)
e) A= \(8400.(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25})\)
f) T= \((\frac{1}{2}+1).(\frac{1}{3}+1).(\frac{1}{4}+1)...(\frac{1}{98}+1).(\frac{1}{99}+1)\)
h) A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)phần \(\frac{1}{5}+\frac{5}{3}+\frac{5}{6}+\frac{1}{2}+...+\frac{1}{9}\)
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{10}{20}-\frac{1}{20}\)
\(=\frac{9}{20}\)
\(Tính:\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(C=\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
\(D=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)
A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
A=\(\frac{1}{6}\)+\(\frac{1}{12}\)+......+\(\frac{1}{56}\)
A=\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{7.8}\)
A=\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+....+\(\frac{1}{7}\)-\(\frac{1}{8}\)
A=\(\frac{1}{2}\)-\(\frac{1}{8}\)=\(\frac{3}{8}\)
B=\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+...+\(\frac{2}{11.13}\)
B=1-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+....+\(\frac{1}{11}\)-\(\frac{1}{13}\)
B=1-\(\frac{1}{13}\)=\(\frac{12}{13}\)
C=\(\frac{3}{4}\)+\(\frac{3}{28}\)+....+\(\frac{3}{304}\)
C=\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+..+\(\frac{3}{16.19}\)
Rồi bạn cũng tách ra như câu A và câu B
Bài 1: Tính nhanh;
A = 6/4 + 6/28 + 6/70 + 6/130 + 6/208
1/2A=1/2(6/4+6/28+6/70+6/130+6/208)
= 3/4+3/28+3/70+3/130+3/208
= 1-1/4+1/4-1/7+..................-1/16
=1-1/16
=15/16 => A=15/8
Tính nhanh : \(\frac{4}{3}+\frac{7}{6}+\frac{11}{10}+\frac{16}{15}+\frac{22}{21}+\frac{29}{28}+\frac{37}{36}+\frac{46}{45}\)
=(1+1+1+1+1+1+1+1)+(1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45)
Đặt A = 1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Ta có:
A x 1/2= 1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
1/6=1/2x3=1/2-1/3
1/12=1/3x4=1/3-1/4
……………………
1/90=1/9x10=1/9-1/10
A x 1/2=1/2-1/3+1/3-1/4+1/4-1/5+…+1/9-1/10
A x 1/2=1/2-1/10=4/10
A=4/10:1/2=4/5
Vậy 4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45=1+1+1+1+1+1+1+1+4/5=8+4/5=44/5
\(\frac{4}{3}+\frac{7}{6}+\frac{11}{10}+...+\frac{46}{45}\)
\(=1+\frac{1}{3}+1+\frac{1}{6}+1+\frac{1}{10}+...+1+\frac{1}{45}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)(8 chữ số 1)
\(=8+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
Đặt A = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
=> \(\frac{1}{2}\)A = \(\frac{1}{2}\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Vậy A = \(\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
Do đó biểu thức trên là 8 + \(\frac{4}{5}\) = \(\frac{44}{5}\)
Đáp số: \(\frac{44}{5}\)
hic hic, Việt , mình đồng cảm với bạn
mình đánh chữ chậm như rùa
Tính nhanh: \(\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\frac{6}{4!+5!+6!}+\frac{7}{5!+6!+7!}+\frac{8}{6!+7!+8!}\)
Đặt P = ... ( biểu thức đề bài )
Nhận xét: Với \(k\inℕ^∗\) ta có:
\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)
\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)