Tìm n ∈ Z để D= \(\dfrac{1}{n+3}\) có GTNN
Tìm n ∈ Z để D= \(\dfrac{^{6n-3}}{3n+1}\) có GTLN
Lời giải:
$D=\frac{2(3n+1)-5}{3n+1}=2-\frac{5}{3n+1}$
Để $D$ max thì $\frac{5}{3n+1}$ min
$\Rightarrow 3n+1$ max
$\Rightarrow n$ max
Với $n$ nguyên thì không có giá trị $n$ max. Nên không tồn tại $n$ nguyên để $D$ max.
Cho phân số P= 3n+1/n-3 ( n thuộc Z )
a) Tìm n để P có GTLN. GTLN đó bằng bao nhiêu?
b) Tìm n để P có GTNN. GTNN đó bằng bao nhiêu?
Cho A = 4n+1/2n+3 tìm n ϵ Z để :
a) A có GTLN
b) A có GTNN
Tìm n ϵ Z, để các phân số sau có giá trị là số tự nhiên
a) \(\dfrac{n+2}{3}\) b) \(\dfrac{7}{n-1}\) c) \(\dfrac{n+1}{n-1}\)
a) \(\dfrac{n+2}{3}\) là số tự nhiên khi
\(n+2⋮3\)
\(\Rightarrow n+2\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)
b) \(\dfrac{7}{n-1}\) là số tự nhiên khi
\(7⋮n-1\)
\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)
\(\Rightarrow7n-7n+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)
c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi
\(n+1⋮n-1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+1-n+1⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)
Cho A= 3n-5/2n+1(n€Z).
a. Tìm n để A có giá trị nguyên.
b. Tìm n để A là phân số tối giản.
c. Tìm n để A là phân số rút gọn được.
d. Tìm GTLN, GTNN của A.
Tìm x ∈ Z để phân số sau có GTNN: A= \(\dfrac{x-13}{x+3}\)
Cho phân số A=\(\dfrac{n+1}{n-3}\) (n\(\in\)Z)
a, Tìm các giá trị của n để A là phân số.
b, Tìm n để A có giá trị nguyên.
a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3
b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)
\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
\(\Leftrightarrow4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
cho \(A=\frac{4n+1}{2n+3}\)\(\left(n\in Z\right)\)
a, tìm n để A có GT nguyên
b, Tìm n để A có GTLN ,GTNN