Cho A = 2+2^2+2^3+2^4+...+2^60. Chung to rang A chia het cho 3;7va 15
cho A = 2+ 2^2+2^3+2^4+....+2^60
chung to rang A chia het cho 3
\(A=2\left(2+1\right)+2^3\left(2+1\right)+2^5\left(1+2\right)+.....+2^{59}\left(2+1\right)\)
\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)
Vậy \(A⋮3\)
Cho B=3+3^ 2 +3^ 3 +***+3^1991 Chứng tỏ rằng B chia hết cho 13 .
Sửa đề: \(B=3+3^2+3^3+\cdots+3^{1992}\)
Ta có: \(B=3+3^2+3^3+\cdots+3^{1992}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{1990}+3^{1991}+3^{1992}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{1990}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+\cdots+3^{1990}\right)\) ⋮13
cho A= 2+22+23+24+25+..........+260
chung to rang A chia het cho 3,7,15
A=(2+2^2)+(2^3+2^4)+........+(2^59+2^60)=(2.1+2.2)+(2^3.1+2^3.2)+...........+(2^59.1+2^59.2)
=2.(1+2)+2^3.(1+2)+............+2^59.(1+2)
=2.3+2^3.3+...........2^59.3 chia hết cho 3 suy ra A chia hết cho3
A=(2+2^2+2^3)+(2^4+2^5+2^6)+.........+(2^58+2^59+2^60)=(2.1+2.2+2.2^2)+(2^4.1+2^4.2+2^4.2^2)+....+(2^58.1+2^58.2+2^58.2^2)
=2.(1+2+2^2)+2^4.(1+2+2^2)+.....+2^58.(1+2+2^2)
=2.7+2^4.7+...........+2^58.7 chia hết cho 7 suy ra A chia hết cho 7
câu A chia hết cho 15 bn gộp 4 số hạng lại với nhau nhé, nếu ko biết làm thì nhắn tin hỏi mk, mk giải ra cho
Cho A=2+2^2+2^3+...+2^60
Chung minh rang A chia het cho 6
A=2+2^2+2^3+...+2^60
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=6+2^2.(2+2^2)+...+2^58.(2+2^2)
A=6+2^2.6+...+2^58.6
A=6.(1+2^2+...+26^58)
Vì 6\(⋮\)6
=>6.(1+2^2+...+2^58) \(⋮\)6
=>A\(⋮\)6
Vậy A chia hết cho 6
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
Cho A=2+22+23+......+260 chung minh rang A chia het cho 3,7,15
Cho bieu thuc A = 2 + 22 + 24 + 25 + ........+260
chung to rang A chia het cho 7
sai đè rồi . phải có thêm 23mới chứng minh được chứ
cho A=1+4+4^2+4^3+...+4^11
a,chung to rang A chia het cho 21
b,A chia het cho 105
c,A chia het cho 4097
a)A=1+4+4^2+4^3+...+4^11
=(1+4+42)+(43+44+45)+(46+47+48)+(49+410+411)
=(1+4+42)+(43.1+43.4+43.42)+(46.1+46.4+46.42)+(49.1+49.4+49.42)
=(1+4+42).1+43.(1+4+42)+46.(1+4+42)+49.(1+4+42)
=21.1+43.21+46.21+49.21
=21.(1+43+46+49)
=> A chia het cho 21
b)A=1+4+4^2+4^3+...+4^11
=(1+4+42+43+44+45)+(46+47+48+49+410+411)
=(1+4+42+43+44+45)+(46.1+46.4+46.42+46.43+46.44+46.45)
=(1+4+42+43+44+45).1+46.(1+4+42+43+44+45)
=1365.1+46.1365
=1365.1+46.1365
=1365.(1+46)
vì nên 1365 chia hết cho 105 nên A chia het cho 105
chung to rang :
a) (31997 - 1150) chia het cho 2
b) ( 21993+ 471) chia het cho 2